Уравнения в целых числах. Урок "решение линейных уравнений с двумя переменными в целых числах" Нахождение целочисленные решение уравнение с двумя неизвестными

1.3 Способы решения уравнений

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

1. Способ перебора вариантов.

2. Алгоритм Евклида.

3. Цепные дроби.

4. Метод разложения на множители.

5. Решение уравнений в целых числах как квадратных относительно какой-либо переменной.

6. Метод остатков.

7. Метод бесконечного спуска.

Глава 2. Применение способов решения уравнений

1. Примеры решения уравнений.

2.1 Алгоритм Евклида.

Задача 1 . Решить уравнение в целых числах 407х – 2816y = 33.

Воспользуемся составленным алгоритмом.

1. Используя алгоритм Евклида, найдем наибольший общий делитель чисел 407 и 2816:

2816 = 407·6 + 374;

407 = 374·1 + 33;

374 = 33·11 + 11;

Следовательно (407,2816) = 11, причем 33 делится на 11

2. Разделим обе части первоначального уравнения на 11, получим уравнение 37х – 256y = 3, причем (37, 256) = 1

3. С помощью алгоритма Евклида найдем линейное представление числа 1 через числа 37 и 256.

256 = 37·6 + 34;

Выразим 1 из последнего равенства, затем последовательно поднимаясь по равенствам будем выражать 3; 34 и полученные выражения подставим в выражение для 1.

1 = 34 – 3·11 = 34 – (37 – 34·1) ·11 = 34·12 – 37·11 = (256 – 37·6) ·12 – 37·11 =

– 83·37 – 256·(–12)

Таким образом, 37·(– 83) – 256·(–12) = 1, следовательно пара чисел х 0 = – 83 и у 0 = – 12 есть решение уравнения 37х – 256y = 3.

4. Запишем общую формулу решений первоначального уравнения

где t - любое целое число.

2.2 Способ перебора вариантов.

Задача 2. В клетке сидят кролики и фазаны, всего у них 18 ног. Узнать, сколько в клетке тех и других?

Решение: Составляется уравнение с двумя неизвестными переменными, в котором х – число кроликов, у – число фазанов:

4х + 2у = 18, или 2х + у = 9.

Выразим у через х : у = 9 – 2х.

х 1 2 3 4
у 7 5 3 1

Таким образом, задача имеет четыре решения.

Ответ: (1; 7), (2; 5), (3; 3), (4; 1).

2.3 Метод разложения на множители.

Перебор вариантов при нахождении натуральных решений уравнения с двумя переменными оказывается весьма трудоемким. Кроме того, если уравнение имеет целые решения, то перебрать их невозможно, так как таких решений бесконечное множество. Поэтому покажем еще один прием - метод разложения на множители.

Задача 3. Решить уравнение в целых числах y 3 - x 3 = 91.

Решение. 1) Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

(y - x )(y 2 + xy + x 2) = 91……………………….(1)

2) Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

3) Проводим исследование. Заметим, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 - 2|y ||x | + x 2 = (|y | - |x |) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение (1) равносильно совокупности систем уравнений:

; ; ;

4) Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Ответ: уравнение (1) имеет четыре решения (5; 6); (-6; -5); (-3; 4); (-4;3).

Задача 4. Найти все пары натуральных чисел, удовлетворяющих уравнению

Решение. Разложим левую часть уравнения на множители и запишем уравнение в виде

.

Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1·69 и 69=3·23. Учитывая, что

, получим две системы уравнений, решив которые мы сможем найти искомые числа: или .

Первая система имеет решение

, а вторая система имеет решение .

Ответ:

.

Задача 5. Решить уравнение в целых числах:

.

Решение. Запишем уравнение в виде

.

Разложим левую часть уравнения на множители. Получим

.

Произведение двух целых чисел может равняться 1 только в двух случаях: если оба они равны 1 или -1. Получим две системы:

или .

Первая система имеет решение х=2, у=2, а вторая система имеет решение х=0, у=0.

Ответ:

.

Задача 6. Решить в целых числах уравнение

Решение . Запишем данное уравнение в виде

.

Разложим левую часть уравнения на множители способом группировки, получим

.

Произведение двух целых чисел может равняться 7 в следующих случаях:

7=1· 7=7·1=-1·(-7)=-7·(-1).Таким образом, получим четыре системы:

или , или , или .

Решением первой системы является пара чисел х = - 5, у = - 6. Решая вторую систему, получим х = 13, у = 6.Для третьей системы решением являются числа х = 5, у = 6. Четвёртая система имеет решение х = - 13, у = - 6.

.

Задача 7. Доказать, что уравнение (x - y ) 3 + (y - z ) 3 + (z - x ) 3 = 30 не

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми , в честь древнегреческого математика , который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику . Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

    способ перебора вариантов;

    применение алгоритма Евклида;

    представление чисел в виде непрерывных (цепных) дробей;

    разложения на множители;

    решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

    метод остатков;

    метод бесконечного спуска.

Задачи с решениями

1. Решить в целых числах уравнение x 2 – xy – 2y 2 = 7.

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

а) 20х + 12у = 2013;

б) 5х + 7у = 19;

в) 201х – 1999у = 12.

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

x 0 = 1, y 0 = 2.

5x 0 + 7y 0 = 19,

5(х – x 0) + 7(у – y 0) = 0,

5(х – x 0) = –7(у – y 0).

Поскольку числа 5 и 7 взаимно простые, то

х – x 0 = 7k, у – y 0 = –5k.

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x 0 = 1273·12 = 15276, y 0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

3. Решить в целых числах уравнение:

а) x 3 + y 3 = 3333333;

б) x 3 + y 3 = 4(x 2 y + xy 2 + 1).

а) Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе ), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

б) Перепишем исходное уравнение в виде (x + y) 3 = 7(x 2 y + xy 2) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

а) в простых числах уравнение х 2 – 7х – 144 = у 2 – 25у;

б) в целых числах уравнение x + y = x 2 – xy + y 2 .

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

2 х 16, 2 у 16.

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x 2 – (y + 1)x + y 2 – y = 0.

Дискриминант этого уравнения равен –3y 2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x 2 + y 2 + z 2 = x 3 + y 3 + z 3 ?

Попробуем подбирать такие тройки, где у = –z. Тогда y 3 и z 3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

x 2 + 2y 2 = x 3

или, иначе,

x 2 (x–1) = 2y 2 .

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n 2 +1. Подставляя в x 2 (x–1) = 2y 2 такое число, после несложных преобразований получаем:

y = xn = n(2n 2 +1) = 2n 3 +n.

Все тройки, полученные таким образом, имеют вид (2n 2 +1; 2n 3 +n; –2n 3 – n).

Ответ: существует.

6. Найдите такие целые числа x, y, z, u, что x 2 + y 2 + z 2 + u 2 = 2xyzu.

Число x 2 + y 2 + z 2 + u 2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

x = 2x 1 , y = 2y 1 , z = 2z 1 , u = 2u 1 ,

и исходное уравнение примет вид

x 1 2 + y 1 2 + z 1 2 + u 1 2 = 8x 1 y 1 z 1 u 1 .

Теперь заметим, что (2k + 1) 2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x 1 , y 1 , z 1 , u 1 нечётны, то x 1 2 + y 1 2 + z 1 2 + u 1 2 не делится на 8. А если ровно два из этих чисел нечётно, то x 1 2 + y 1 2 + z 1 2 + u 1 2 не делится даже на 4. Значит,

x 1 = 2x 2 , y 1 = 2y 2 , z 1 = 2z 2 , u 1 = 2u 2 ,

и мы получаем уравнение

x 2 2 + y 2 2 + z 2 2 + u 2 2 = 32x 2 y 2 z 2 u 2 .

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2 n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

Ответ: (0; 0; 0; 0).

7. Докажите, что уравнение

(х – у) 3 + (y – z) 3 + (z – x) 3 = 30

не имеет решений в целых числах.

Воспользуемся следующим тождеством:

(х – у) 3 + (y – z) 3 + (z – x) 3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у 2 .

Очевидно, что

если х = 1, то у 2 = 1,

если х = 3, то у 2 = 9.

Этим случаям соответствуют следующие пары чисел:

х 1 = 1, у 1 = 1;

х 2 = 1, у 2 = –1;

х 3 = 3, у 3 = 3;

х 4 = 3, у 4 = –3.

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

9. Решите следующую систему уравнений в натуральных числах:

a 3 – b 3 – c 3 = 3abc, a 2 = 2(b + c).

3abc > 0, то a 3 > b 3 + c 3 ;

таким образом имеем

Складывая эти неравенства, получим, что

С учётом последнего неравенства, из второго уравнения системы получаем, что

Но второе уравнение системы также показывает, что а – чётное число. Таким образом, а = 2, b = c = 1.

Ответ: (2; 1; 1)

10. Найти все пары целых чисел х и у, удовлетворяющих уравнению х 2 + х = у 4 + у 3 + у 2 + у.

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у 2 + 1),

х(х + 1) = (у 2 + у)(у 2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

х 1 = 0, у 1 = 0;

х 2 = 0, у 2 = –1;

х 3 = –1, у 3 = 0;

х 4 = –1, у 4 = –1.

Произведение (у 2 + у)(у 2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х 5 = 5, х 6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

х 5 = 5, у 5 = 2;

х 6 = –6, у 6 = 2.

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

Задачи без решений

1. Решить в целых числах уравнение:

а) ху = х + у + 3;

б) х 2 + у 2 = х + у + 2.

2. Решить в целых числах уравнение:

а) х 3 + 21у 2 + 5 = 0;

б) 15х 2 – 7у 2 = 9.

3. Решить в натуральных числах уравнение:

а) 2 х + 1 = у 2 ;

б) 3·2 х + 1 = у 2 .

4. Доказать, что уравнение х 3 + 3у 3 + 9z 3 = 9xyz в рациональных числах имеет единственное решение

5. Доказать, что уравнение х 2 + 5 = у 3 в целых числах не имеет решений.

Генрих Г.Н. ФМШ №146 г. Пермь

54 ≡ 6× 5 ≡ 2(mod 7),

55 ≡ 2× 5 ≡ 3(mod 7), 56 ≡ 3× 5 ≡ 1(mod 7).

Возводя в степень k, получаем 56k ≡ 1(mod 7) при любом натуральном k. Поэтому 5555 =56 × 92 × 53 ≡ 6 (mod7).

(Геометрически это равенство означает, что мы проходим по кругу, стартуя от 5, девяносто два цикла и еще три числа). Таким образом, число 222555 дает при делении на 7 остаток 6.

Решение уравнений в целых числах.

Несомненно, одна из интересных тем математики – решение диофантовых уравнений. Эта тема изучается в 8, а затем и в 10 и 11 классе.

Любое уравнение, которое требуется решить в целых числах, называется диофантовым уравнением. Простейшим из них является уравнение вида ах+bу=с, где а, b и с Î Z. При решении этого уравнения используется следующая теорема.

Теорема. Линейное диофантово уравнение ах+bу=с, где а, b и сÎ Z имеет решение тогда и только тогда, когда с делится на НОД чисел а и b. Если d=НОД (а, b), a=a1 d, b=b1 d, c=c1 d и (x0 , y0 ) – некоторое решение уравнения ах+bу=с, то все решения задаются формулами х=x0 +b1 t, y=y0 –a1 t, где t ─ произвольное целое число.

1. Решить в целых числах уравнения:

3ху–6х2 =у–2х+4;

(х–2)(ху+4)=1;

у–х–ху=2;

2х2 +ху=х+7;

3ху+2х+3у=0;

х2 –ху–х+у=1;

х2 –3ху=х–3у+2;

10. х2 –ху– у=4.

2. Следующие задачи рассматривала с выпускниками при подготовке к ЕГЭ по математике по данной теме.

1). Решить в целых числах уравнение: ху+3у+2х+6=13. Рещение:

Разложим на множители левую часть уравнения. Получим:

у(х+3)+2(х+3)=13;

(х+3)(у+2)=13.

Так как x,уÎ Z, то получим совокупность систем уравнений:

Генрих Г.Н.

ì x +

ì x +

ì x +

ê ì x +

ФМШ №146 г. Пермь

ì x =

ì x =

ì x =

ê ì x =

Ответ: (–2;11), (10; –1), (–4; –15), (–15, –3)

2). Решить в натуральных числах уравнение: 3х +4у =5z .

9). Найти все пары натуральных чисел m и n, для которых справедливо равенство 3m +7=2n .

10). Найти все тройки натуральных чисел k, m и n, для которых справедливо равенство: 2∙k!=m! –2∙n! (1!=1, 2!=1∙2, 3!= 1∙2∙3, …n!= 1∙2∙3∙…∙n)

11). Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, или в 14 раз больше, или в 14 раз меньше предыдущего. Сумма всех членов последовательности равна 4321.

в) Какое наибольшее число членов может иметь последовательность? Решение:

а) Пусть а1 =х, тогда а2 = 14х или а1 =14х, тогда а2 =х. Тогда по условию а1 + а2 = 4321. Получим: х+14х=4321, 15х=4321, но 4321 не кратно 15, значит, двух членов в последовательности быть не может.

б) Пусть а1 =х, тогда а2 = 14х, а3 =х, или 14х+х+14х=4321, или х+14х+х=4321. 29х=4321, тогда х=149, 14х=2086. Значит, последовательность может иметь три члена. Во втором случае 16х=4321, но тогда х не является натуральным числом.

Ответ: а) нет; б) да; в) 577.

Генрих Г.Н.

ФМШ №146 г. Пермь

12). Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, или в 10; раз больше, или в 10 раз меньше предыдущего. Сумма всех членов последовательности равна 1860.

а) Может ли последовательность иметь два члена? б) Может ли последовательность иметь три члена?

в) Какое наибольшее число членов может иметь последовательность?

Очевидно, что говорить о делимости целых чисел и рассматривать задачи по данной теме можно бесконечно. Я постаралась рассмотреть эту тему так, чтобы в большей степени заинтересовать учащихся, показать им красоту математики еще и с этой с точки зрения.

Генрих Г.Н.

ФМШ №146 г. Пермь

Список литературы:

1. А. Я. Каннель-Белов, А. К. Ковальджи. Как решают нестандартные задачи Москва МЦНМО 2001

2. А.В.Спивак. Приложение к журналу Квант№4/2000 Математический праздник, Москва 2000

3. А.В.Спивак. Математический кружок, «Посев» 2003

4. Санкт-Петербургский городской дворец творчества юных. Математический кружок. Задачник первого-второго года обучения. Санкт-Петербург. 1993

5. Алгебра для 8 класса. Учебное пособие для учащихся школ и классов с углубленным изучением математики. Под редакцией Н.Я.Виленкина. Москва, 1995 г.

6. М.Л.Галицкий, А.М.Гольдман, Л.И.Звавич. Сборник задач по алгебре для 8-9 классов. Учебное пособие для учащихся школ и классов с углубленным изучением математики. Москва, Просвещение. 1994 г.

7. Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков. Алгебра 8 класс. Учебник для школ и классов с углубленным изучением математики. Москва, 2001 г.

8. М.И.Шабунин, А.А.Прокофьев УМК МАТЕМАТИКА Алгебра. Начала математического анализа. Профильный уровень. Учебник для 11 класса. Москва Бином. Лаборатория знаний 2009

9. М.И.Шабунин, А.А.Прокофьев, Т.А.Олейник, Т.В.Соколова. УМК МАТЕМАТИКА Алгебра. Начала математического анализа. Профильный уровень Задачник для 11 класса. Москва Бином. Лаборатория знаний 2009

10. А.Г.Клово, Д.А.Мальцев, Л.И.Абзелилова Математика. Сборник тестов по плану ЕГЕ 2010

11. ЕГЭ-2010. «Легион-М». Ростов-на-Дону 2009

12. ЕГЭ УМК «Математика. Подготовка к ЕГЭ». Под редакцией Ф.Ф.Лысенко, С.Ю.Кулабухова. Подготовка к ЕГЭ-2011. «Легион-М». Ростов-на-Дону 2010

13. УМК «Математика. ЕГЭ-2010». Под редакцией Ф.Ф.Лысенко, С.Ю.Кулабухова. МАТЕМАТИКА Подготовка к ЕГЭ-2010. Учебно-тренировочные тесты. «Легион-М». Ростов-на-Дону 2009

14. ФИПИ ЕГЭ. Универсальные материалы для подготовки учащихся МАТЕМАТИКА 2010 «Интеллект-Центр» 2010

15. А.Ж.Жафяров. Математика. ЕГЭ-2010 Экспресс-консультация. Сибирское университетское издательство, 2010

Задача 12.

Решите в целых числах 5х²+ 5у² + 8ху + 2у – 2у + 2 = 0 .

Решение.

Если попытаться решить данное уравнение методом разложения на множители, то это достаточно трудоёмкая работа, поэтому это уравнение можно решить более изящным методом. Рассмотрим уравнение, как квадратное относительн о х 5х²+(8у-2)х+5у²+2у +2=0 , х1,2 = (1 – 4у ±√(1 – 4у) ² - 5(5у² + 2у + 2))/5 = (1 – 4у ±-9(у + 1)²)/5.

Данное уравнение имеет решение тогда, когда дискриминант равен нулю, т.е. –9(у + 1) = 0 , отсюда у = -1 . Если у = -1 , то х =1 .

Ответ.

Задача 13.

Решите в целых числах 3(х² + ху + у²)= х + 8у

Решение.

Рассмотрим уравнение, как квадратное относительно х 3х ² + (3у - 1)х + 3у² - 8у = 0. Найдём дискриминант уравнения D = =(3у – 1) ² - 4 * 3(3у² - 8у) = 9у² - 6у + 1 – 36у² + 96у = -27у² + 90у + 1.

Данное уравн ение имеет корни, если D ³ 0 , т. е. –27у² + 90 у + 1³ 0

(-45 + √2052)/ (-27) £ у £ (-45 -√2052)/ (-27) (4)

Так как у Î Z , то условию (4) удовлетворяют только 0, 1, 2, 3 . Перебирая эти значения, получим, что уравнение в целых числах имеет решения (0; 0) и (1; 1) .

Ответ.

(0; 0) , (1; 1) .

Задача 14.

Решите уравнение 5х² - 2ху + 2у² - 2х – 2у + 1= 0.

Решение.

Рассмотрим данное уравнение как квадратное относительно х с коэффициентами, зависящими от у, 5х² - 2(у + 1)х + 2у² – 2у + 1= 0.

Найдём четверть дискриминанта D/4=(y+1)²-5(2y²-2y+1)=-(3y-2)² .

Отсюда следует, что уравнение имеет решение только тогда, когда -(3у – 2)² = 0 , отсюда следует у = ⅔, затем находим х = ⅓.

Ответ.

(⅓; ⅔).

Метод остатков.

Задача 15.

Решите в целых числах 3ª = 1 + у²

Решение.

Видно, что (0; 0) – решение данного уравнения. Докажем, что других решений нет.

Рассмотрим случаи:

1) х Î N, y Î N (5)

Если х Î N , то делится на 3 без остатка, а у² + 1 при делении на 3 даёт остаток либо 1 , либо 2 . Следовательно, равенство (5) при натуральных значениях х и у невозможно.

2)Если х – целое отрицательное число, y Î Z, тогда 0<3ª<1, а 1+у²³0 и равенство (5)также невозможно. Следовательно, (0; 0) – единственное решение.

Ответ.

Задача 16.

Докажите, что система уравнений

ì х² - у² = 7

î z² - 2y² = 1

не имеет решений в целых числах.

Решение.

Предположим, что система разрешена. Из второго уравнения z²=2у+1, т. е. z²– нечётноё число и z -нечётное, значит z=2m+1 . Тогда y²+2m²+2m , значит, у² - чётное числои у – чётное, y = 2n, n Î Z.

x²=8n³+7, т. е. х² - нечётное число и х - нечётное число, х=2k+1, k Î Z.

Подставим значения х и у в первое уравнение, получим 2(k² + k - 2n³) = 3, что невозможно, так как левая часть делится на 2 , а правая нет.

Значит, наше предположение неверно, т.е. система не имеет решений в целых числах.

Метод бесконечного спуска.

Решение уравнений методом бесконечного спуска проходит по следующей схеме: предположив, что уравнение имеет решения, мы строим некоторый бесконечный процесс, в то время, как по самому смыслу задачи этот процесс должен на чём–то кончаться.

Часто метод бесконечного спуска применяется в более простой форме. Предположив, что мы уже добрались до естественного конца, видим, что «остановиться» не можем.

Задача 17.

Решить в целых числах 29х + 13у + 56z = 17 (6)

Выразим неизвестное, коэффициент при котором наименьший, через остальные неизвестные.

у=(17-29х-56z)/13=(1-2x-4z)+(4-3x-4z)/13 (7)

Обозначим (4-3x-4z)/13 = t1 (8)

Из (7) следует, что t1 может принимать только целые значения. Из (8) имеем 13t1 + 3x + 4z = 14 (9)

Получим новое диофантово уравнение, но с меньшими, чем в (6) коэффициентами. Применим к (9) те же соображения: x=(4-13t1-4z)/3= =(1-4t1-z) + (1-t1-z)/3

(1-t1-z)/3 = t2 , t2 – целое, 3t2+t1+z = 1 (10)

В (10) коэффициент при z – неизвестном исходного уравнения равен 1 – это конечный пункт «спуска». Теперь последовательно выражаем z , x , y через t1 и t2 .

ì z = -t1 – 3t2 + 1

í x = 1 – 4t1 + t1 + 3t2 = 1 +t2 = -t1 + 4t2

î y = 1 + 6t1 – 8t2 + 4t1 + 12t2 – 4 + t1= 11t1 + 4t2 - 3

Итак,ì x = -3t1 + 4t2

í y = 11t1 + 4t2 - 3

î z = -t1 – 3t2 + 1

t1, t2 - любые целые числа – все целые решения уравнения (6)

Задача 18.

Решить в целых числах x³ - 3y³ - 9z³ = 0 (11)

Решение.

Видно, что левая часть уравнения (11) не поддаётся никаким преобразованиям. Поэтому исследуя характер целых чисел x³=3(y³-z³). Число кратно 3 , значит и число х кратно 3 , т. е. х = 3х1 (12) Подставим (12) в (11) 27х1³-3у³-9z³=0, 9x1³-y³-3z³=0 (13)

y³=3(3x1³-z³). Тогда у³ кратно 3 , значит и у кратно 3 , т. е. у=3у1 (14). Подставим (14) в (13) 9х1³ -27у1³ - 3z³=0 . Из этого уравнения следует, что кратно 3, а значит и z кратно 3 , т.е. z=3z1 .

Итак, оказалось, что числа, удовлетворяющие уравнению (11), кратны трём, и сколько раз мы не делили бы их на 3 , получаем числа, кратные трём. Единственное целое число, удовлетворяющее трём. Единственное целое число, удовлетворяющее этому условию, будет нуль, т. е. решение данного уравнения (0; 0; 0)

Решение уравнений в целых числах.

Неопределенные уравнения – уравнения, содержащие более одного неизвестного. Под одним решением неопределенного уравнения понимается совокупность значений неизвестных, которая обращает данное уравнение в верное равенство.

Для решения в целых числах уравнения вида ах + by = c , где а, b , c – целые числа, отличные от нуля, приведем ряд теоретических положений, которые позволят установить правило решения. Эти положения основаны также на уже известных фактах теории делимости.

Теорема 1. Если НОД(а, b ) = d , то существуют такие целые числа х и у , что имеет место равенство ах + b у = d . (Это равенство называется линейной комбинацией или линейным представлением наибольшего общего делителя двух чисел через сами эти числа.)

Доказательство теоремы основано на использовании равенства алгоритма Евклида для нахождения наибольшего общего делителя двух чисел (наибольший общий делитель выражается через неполные частные и остатки, начиная с последнего равенства в алгоритме Евклида).

Пример .

Найти линейное представление наибольшего общего делителя чисел 1232 и 1672.

Решение.

1. Составим равенства алгоритма Евклида:

1672 = 1232 ∙1 + 440,

1232 = 440 ∙ 2 + 352,

440 = 352 ∙ 1 + 88,

352 = 88 ∙ 4, т.е. (1672,352) = 88.

2) Выразим 88 последовательно через неполные частные и остатки, используя полученные выше равенства, начиная с конца:

88 = 440 - 352∙1 = (1672 - 1232) - (1232 - 1672∙2 + 1232∙2) = 1672∙3 - 1232∙4, т.е. 88 = 1672∙3 + 1232∙(-4).

Теорема 2. Если уравнение ах + b у = 1 , если НОД(а, b ) = 1 , достаточно представить число 1 в виде линейной комбинации чисел а и b .

Справедливость этой теоремы следует из теоремы 1. Таким образом, чтобы найти одно целое решение уравнения ах + b у = 1, если НОД (а, в) = 1, достаточно представить число 1 в виде линейной комбинации чисел а и в .

Пример.

Найти целое решение уравнения 15х + 37у = 1.

Решение.

1. 37 = 15 ∙ 2 + 7,

15 = 7 ∙ 2 + 1.

2. 1 = 15 - 7∙2 = 15 - (37 - 15∙2) ∙2 = 15∙5 + 37∙(-2),

Теорема 3 . Если в уравнении ах + b у = с НОД(а, b ) = d >1 и с не делится на d , то уравнение целых решений не имеет.

Для доказательства теоремы достаточно предположить противное.

Пример .

Найти целое решение уравнения 16х - 34у = 7.

Решение .

(16,34)=2; 7 не делится на 2, уравнение целых решений не имеет

Теорема 4 . Если в уравнении ах + b у = с НОД(а, b ) = d >1 и с d , то оно

При доказательстве теоремы следует показать, что произвольное целое решение первого уравнения является также решением второго уравнения и обратно.

Теорема 5 . Если в уравнении ах + b у = с НОД(а, b ) = 1, то все целые решения этого уравнения заключены в формулах:

t – любое целое число.

При доказательстве теоремы следует показать, во-первых, что приведенные формулы действительно дают решения данного уравнения и, во-вторых, что произвольное целое решение этого уравнения заключено в приведенных формулах.

Приведенные теоремы позволяют установить следующее правило решения в целых числах уравнения ах+ b у = с НОД(а, b ) = 1:

1) Находится целое решение уравнения ах + b у = 1 путем представления 1 как линейной комбинации чисел а и b (существуют и другие способы отыскания целых решений этого уравнения, например при использовании цепных дробей);

Составляется общая формула целых решений данного

Придавая t определенные целые значения, можно получить частные решения данного уравнения: наименьшие по абсолютной величине, наименьшие положительные (если можно) и т.д.

Пример .

Найти целые решения уравнения 407х - 2816у = 33 .

Решение.

1. Упрощаем данное уравнение, приводя его к виду 37х - 256у = 3.

2.Решаем уравнение 37х - 256у = 1.

256 = 37∙ 6 + 34,

37 = 34 ∙1 + 3,

34 = 3 ∙11 + 1.

1 = 34 - 3∙11 = 256 - 37∙6 - 11 (37 – 256 + 37∙6) = 256∙12 - 37∙83 =

37∙(-83) - 256∙(-12),

3. Общий вид всех целых решений данного уравнения:

х = -83∙3 - 256 t = -249 - 256 t ,

у = -12∙3 - 37 t = -36 - 37 t .

Метод полного перебора всех возможных значений переменных,

входящих в уравнение.

Найти множество всех пар натуральных чисел, которые являются решениями уравнения 49х + 51у = 602.

Решение:

Выразим из уравнения переменную х через у х = , так как х и у – натуральные числа, то х = 602 - 51у ≥ 49, 51у≤553, 1≤у≤10 .

Полный перебор вариантов показывает, что натуральными решениями уравнения являются х=5, у=7.

Ответ: (5;7).

Решение уравнений методом разложения на множители.

Диофант наряду с линейными уравнениями рассматривал квадратные и кубические неопределенные уравнения. Решение их, как правило, сложно.

Рассмотрим такой случай, когда в уравнениях можно применить формулу разности квадратов или другой способ разложения на множители.

Решить уравнение в целых числах: х 2 + 23 = у 2

Решение:

Перепишем уравнение в виде: у 2 - х 2 = 23, (у - х)(у + х) = 23

Так как х и у – целые числа и 23 – простое число, то возможны случаи:

Решая полученные системы, находим:

(-11;12),(11;12),(11;-12),(-11;-12)

Выражение одной переменной через другую и выделение целой части дроби.

Решить уравнение в целых числах: х 2 + ху – у – 2 = 0.

Решение:

Выразим из данного уравнения у через х:

у(х - 1) =2 - х 2 ,