Типы строения хромосом. Строение ядра

Что такое хромосома? Это основа строения каждого организма.

Именно она определяет генетику организма: от расположенности к различным заболеваниям до цвета глаз.

Сколько хромосом у людей, сколько их должно быть в норме, какие существуют хромосомные болезни и что является причиной их появления - об этом и многом другом в материале данной статьи.

Что такое хромосомы


Хромосомы – это отдельные цепи ДНК (дезоксирибонуклеиновой кислоты), которые свернуты в двойную спираль и образуют плотные нитевидные кусочки. Поэтому их еще называют нитевидными молекулами.

История открытия хромосом

Классическая биология подразумевает, что открытие хромосомы неразрывно связано с открытиями клетки и ядра. Все находки стали возможными только после изобретения микроскопа Левенгуком в 1674 году.

В 1831 году Роберт Браун первым определил, что в клетках растений есть клеточное ядро. Он опубликовал множество научных трудов по этому вопросу.

В 1838 М. Дж. Шлейдена выдвинул неверную эпигенетическую теорию. Она утверждает, что клеточное ядро создается из жидкости клетки. Это послужило классической противоположностью открытию Эдуарда ван Бенедена в 1883 году, что нитевидные молекулы – это отдельные объекты.

В 1842 году Карл Вильгельм фон Нагели обнаружил субклеточные структуры. Он наблюдал «идиоплазму», сеть струноподобных тел. Ученый ошибочно предполагал, что они образуют взаимосвязанную сеть во всем организме.

В 1873 году Шнайдер описал косвенное деление ядра с помощью «Kernfigur» (ядерная фигура) и «ахроматического веретена». В 1883 году Эдуард ван Бенеден обнаружил, что после оплодотворения половых клеток нематоды Ascaris megalocephala не сливаются с нитевидными молекулами ядра ооцита. Следовательно, они являются отдельными сущностями.

Правила Менделя были основаны на суждениях Бенедена, но эта связь была обнаружена только через несколько лет.

Определение «хромосома» было придумано Уолдиером в 1888 году. Термин происходит от греческих слов «цвет» и «тело». Термин имеет такое название, потому что хромосома обладает способностью окрашиваться красителями.

А уже в 1960 году была создана первая Денверская международная классификация, которая помогает в построении кариограммы человека - совокупности всех хромосом диплоидного набора клетки.

Из чего состоит хромосома

У хромосом выявлено нитевидное строение, обнаруженное в ядрах как животных, так и растений. Они сделаны из белка и одной молекулы дезоксирибонуклеиновой кислоты.

ДНК – это хранилище генетических инструкций, позволяющее производить белки и клеточные процессы, которые необходимы для жизни и передаются из поколения в поколение. Все фрагменты ДНК состоят из последовательностей генов, содержащих инструкции для развития, размножения и, в конечном итоге, гибели каждой клетки. Каждая из цепей ДНК может содержать от 10000 до 100000000 нуклеотидов.

ДНК разбивается на одноцепочечные полинуклеотидные цепи, чтобы обнажить генные последовательности, которые можно скопировать в РНК (мРНК, рибонуклеиновая кислота). Эта мРНК имеет четыре нуклеотидных основания, расположенных в различных комбинациях из трех, и похожа на ДНК.

Рибосомы читают эти три основанные на нуклеотиде последовательности и переводят их, чтобы сформировать аминокислотную последовательность белка. Каждая последовательность кодирует одну из 20 аминокислот.

Сначала аминокислоты образуют длинную цепь, называемую полипептидной цепью. Затем эта цепь претерпевает конформационные и структурные изменения, сворачиваясь и складываясь над собой, пока не будет достигнута окончательная сложная структура белка.

Нитевидные молекулы также содержат ДНК-связанные белки или гистоны, которые консолидируют и стабилизируют ДНК и регулируют ее функции.

Они могут иметь конденсированную ДНК, организованную вокруг гистоновых белков с образованием хроматина. Хроматин позволяет встраивать длинные цепи ДНК в ядро. При делении они образуют плотные небольшие нитевидные структуры, которые необходимо реплицировать, прежде чем они будут равномерно разделены на две новые клетки, чтобы каждая из них имела одинаковое количество нитевидных молекул.

Детальный процесс образования и структура представлена на рисунке ниже.

Когда клетки тела делятся (митоз), образуется метафазная нитевидная молекула (у строения дополнительно имеется вторичная перетяжка и спутник). Две копии 23 хромосом передаются на каждую дочернюю клетку, давая им обоим полный набор из 46 хромосом.

Когда гаметы (яйцеклетки или сперматозоиды) делятся (мейоз), только половина передается на дочерние, так как они образуют полный набор при слиянии с другой гаметой во время оплодотворения, после чего полученная зигота будет иметь 23 пары нитевидных молекул с половиной от каждого родителя.

Типы хромосом

Классификация зависит от положения центромеры (первичной перетяжки). Она необходима для процесса деления и обеспечивает точное разделение нитевидных молекул.

Исследования показали, что нитевидные молекулы без первичной перетяжки выделяются случайным образом и в конечном итоге теряются из клеток. Рисунок с подписями наглядно отображает расположение центромеры.

Существует четыре основных типа:


Функции хромосом

Поскольку генетический материал передается от родителей к ребенку, они ответственны за содержание инструкций, которые делают потомство уникальным, в то же время сохраняя черты от родителей. У большинства организмов одна хромосома наследуется от матери, а другая наследуется от отца.

Крайне важно, чтобы определенные клетки, такие как репродуктивные, имели правильное количество нитевидных молекул для нормального функционирования.

Структура помогает гарантировать то, что ДНК остается плотно обернутой вокруг белков, иначе молекулы ДНК были бы слишком большими.

Организмы растут, подвергаясь клеточному делению, чтобы произвести новые клетки и заменить старые, изношенные. Во время этого деления ДНК должна оставаться неповрежденной и сохранять равномерное распределение. Они играют роль в этом процессе, позволяя создать точную репликацию ДНК.

Набор хромосом

Существует два типа эукариотических клеток – это гаплоидные и диплоидные. Основное отличие заключается в количестве хромосомных наборов, обнаруженных в ядре.

Гаплоидные клетки – это клетки, которые содержат только один полный хромосомный набор. Наиболее распространенным типом гаплоидных клеток являются гаметы или половые клетки. Гаплоидные клетки продуцируются мейозом. Это генетически разнообразные клетки, которые используются при половом размножении.

Когда гаплоидные клетки от родительских доноров собираются и оплодотворяются, потомство имеет полный набор и становится диплоидной клеткой.

Диплоидные клетки имеют две гомологичные (парные) копии каждой нитевидной молекулы, унаследованные от матери и отца. Все млекопитающие являются организмами этого типа, за исключением нескольких видов.

Диплоидные клетки обозначены как 2n = 2x, а гаплоидные клетки обозначены как n, где n – количество нитевидных молекул, а x – число моноплоидов.

Количество, присутствующее в организме, помогает отличить один вид от другого. Например, антилопа, как и человек, имеет 46, а у макаки 42 хромосомы. 48 хромосом имеют гориллы, а также картофель.

Но у кого больше всего нитевидных молекул? Ophioglossum reticulatum из семейства папоротниковых имеет их 1260. Есть даже те, у кого 2 хромосомы – это муравьи и аскариды. Ясно, что количество не коррелирует со сложностью организма.

Фактически количество нитевидных молекул у животных или растений определяется случайно. Количество может уменьшаться в результате слияния или увеличиваться в результате полиплоидии.

Количество хромосом у человека

Интересно, сколько пар хромосом у человека? Нормальный набор нитевидных молекул у людей имеет 23 пары, что в сумме составляет 46 штук.

Исключением являются половые клетки: яйцеклетки и сперматозоиды. У них в наличии лишь одна нитеобразная структура из каждой пары. Каждая из них может иметь от сотен до тысяч генов.

Женщина обычно владеет двумя X-хромосомами (XX), а у мужчин должно быть по одной X и Y-хромосом (XY). Именно поэтому Y считаются мужскими, а Х – это женские.

Болезни генетики, связанные с хромосомами

Аномалии могут влиять на любую нитевидную молекулу, включая и половые.

Значительные аномалии можно увидеть под микроскопом. Такой тест называется кариотипирование. Меньшие хромосомные аномалии могут быть идентифицированы с помощью специального генетического теста, который сканирует хромосомы человека на наличие отсутствующих или лишних частей.

Числовые отклонения появляются, если в набор добавляется одна или несколько дополнительных нитевидных молекул (появление одной называется трисомия, а двух копий – тетрасомия) или их недостача (известна как моносомия).

Трисомия может поражать любую пару, но более распространенными являются ошибки в 21 (синдром Дауна), в 13, а также в 18 парах. Эти аномалии видны с помощью микроскопа при кариотипировании.

Чем больший возраст у беременной женщины, тем больше вероятность возникновения у плода каких-то аномалий. Когда мужчина становится старше, вероятность зачатия ребенка с аномалией лишь незначительно увеличивается.

Структурные нарушения происходят, когда есть ошибки в строении какой-то части хромосомы. Бывает, когда часть одной создает неправильное соединение с другой нитевидной молекулой (такое называется транслокацией).

Порой случается так, что части вообще не существует (это называется делеция) или они дублируются.

Одни нарушения являются источником гибели эмбриона еще до его рождения. А некоторые отклонения приводят к проблемам, таким как низкий рост, судороги, отсталость в развитии или проблемы с сердцем.

Незначительные мутации происходят в конкретном гене. Такие аномалии не оказывают влияние на строение и, следовательно, их нельзя увидеть во время проведения анализа кариотипа или другого теста.

Одни изменения в гене не сопровождаются проблемами, а другие могут вызвать мало или только легкие отклонения. Но некоторые мутации приводят к серьезным расстройствам, таким как серповидноклеточная анемия, гипертихоз и мышечная дистрофия.

Благодаря стремительному развитию медицины все чаще ученые и медики устанавливают конкретные причины заболеваний человека, которые основаны на генетике. Но остается загадкой, почему возникает множество мутаций.

Предполагается, что значительная часть заболеваний появляется самопроизвольно. Некоторые факторы в экологии и внешнем мире способны повредить и породить аномалии в генах. Такие факторы называются мутагенами.

Например, такие мутагены, как радиационное излучение, ультрафиолетовое излучение, лекарства, и химические субстанции, могут привести к некоторым врожденным дефектам или даже к раку.

Заключение

Теперь вы знаете, у кого 48 хромосом. Их значение сложно переоценить. Без них, репликация ДНК и последующее разнообразие у людей и других организмов, были бы потеряны. Эти нитевидные молекулы необходимы для управления запутанной ДНК как внутри ядра, так и во время деления клетки.

По количеству хромосом нельзя определить эволюционную сложность растения или животного. Но генетическая информация, которая в них содержится, определяет, что делает один организм отличным от всех других, населяющих планету.

Порой преподносят нам удивительные сюрпризы. Например, знаете ли вы, что такое хромосомы, и как они влияют на ?

Предлагаем разобраться в этом вопросе, чтобы раз и навсегда расставить все точки над «i».

Рассматривая семейные фотографии, вы наверняка могли заметить, что члены одного родства похожи друг на друга: дети – на родителей, родители – на бабушек и дедушек. Это сходство передается от поколения к поколению с помощью удивительных механизмов .

У всех живых организмов, от одноклеточных до африканских слонов, в ядре клетки находятся хромосомы – тонкие длинные нити, которые можно рассмотреть только в электронный микроскоп.

Хромосо́мы (др.-греч. χρῶμα - цвет и σῶμα - тело) - это нуклеопротеидные структуры в ядре клетки, в которых сосредоточена бо́льшая часть наследственной информации (генов). Они предназначены для хранения этой информации, ее реализации и передачи.

Сколько хромосом у человека

Еще в конце XIX века ученые выяснили, что число хромосом у разных видов не одинаково.

Например, у гороха 14 хромосом, у – 42, а у человека – 46 (то есть 23 пары) . Отсюда возникает соблазн сделать вывод, что чем их больше – тем сложнее существо, обладающее ими. Однако на самом деле это совершенно не так.

Из 23 пар человеческих хромосом 22 пары — аутосомы и одна пара — гоносомы (половые хромосомы). Половые имеют морфологические и структурные (состав генов) различия.

У женского организма пара гоносом содержит две Х-хромосомы (ХХ-пара), а у мужского – по одной Х- и Y-хромосоме (XY-пара).

Именно от того, каков будет состав хромосом двадцать третьей пары (ХХ или XY), зависит пол будущего ребенка. Определяется это при оплодотворении и слиянии женской и мужской половой клетки.

Данный факт может показаться странным, но по числу хромосом человек уступает многим животным. Например, у какой-то несчастной козы 60 хромосом, а у улитки – 80.

Хромосомы состоят из белка и молекулы ДНК (дезоксирибонуклеиновой кислоты), похожей на двойную спираль. В каждой клетке находится около 2 метров ДНК, а всего в клетках нашего организма около 100 млрд. км ДНК.

Интересен факт, что при наличии лишней хромосомы или при отсутствии хотя бы одной из 46, — у человека наблюдается мутация и серьезные отклонения в развитии (болезнь Дауна и т.п.).

Различают четыре типа строения хромосом:

Ø телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);

Ø акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);

Ø субметацентрические (с плечами неравной длины, напоминающие по форме букву L);

Ø метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Полимерные хромосомы:

Хромосомы «ламповые щетки»:

Хромосомы типа ламповых щеток, впервые обнаруженные В. Флеммингом в 1882 году, - это специальная форма хромосом, которую они приобретают в растущих ооцитах (женских половых клетках) большинства животных, за исключением млекопитающих.

В растущих ооцитах всех животных, за исключением млекопитающих, во время протяженной стадии диплотены профазы мейоза I активная транскрипция многих последовательностей ДНК приводит к преобразованию хромосом в хромосомы, по форме напоминающие щетки для чистки стёкол керосиновых ламп (хромосомы типа ламповых щёток). Они представляют собой сильно деконденсированные полубиваленты, состоящие из двух сестринских хроматид. Хромосомы типа ламповых щеток можно наблюдать с помощью световой микроскопии, при этом видно, что они организованы в виде серии хромомеров (содержат конденсированный хроматин) и исходящих из них парных латеральных петель (содержат транскрипционно активный хроматин).

Наиболее подробно описана организация хромосом типа ламповых щеток хвостатых и бесхвостых амфибий, доместицированных видов птиц и некоторых видов насекомых. Хромосомы типа ламповых щёток амфибий и птиц могут быть изолированы из ядра ооцита с помощью микрохирургических манипуляций.

Хромосомы типа ламповых щёток производят огромное количество РНК, синтезируемой на латеральных петлях. Каждая латеральная петля всегда содержит одну и ту же последовательность ДНК и остаётся в вытянутом состоянии на протяжении всего роста ооцита, вплоть до начала конденсации хромосом. Латеральная петля может содержать одну или несколько транскрипционных единиц с поляризованным РНП-матриксом, покрывающим ДНП-ось петли. Вместе с тем, большая часть ДНК остается в конденсированном состоянии и организована в хромомеры в осях хромосом типа ламповых щёток.

Благодаря гигантским размерам и выраженной хромомерно-петлевой организации, хромосомы типа ламповых щёток на протяжении многих десятилетий служат удобной моделью для изучения организации хромосом, работы генетического аппарата и регуляции экспрессии генов во время профазы мейоза I. Кроме того, хромосомы этого типа широко используются для картирования последовательностей ДНК с высокой степенью разрешения, изучения феномена транскрипции некодирующих белки тандемных повторов ДНК, анализа распределения хиазм и др.

Кариотип и идиограмма хромосом человека. Строение и типы хромосом. Характеристика гаплоидного и диплоидного типа хромосом. Методы анализа фотокариограммы. Группы хромосом в кариотипе человека.

Кариотип и идиограмма хромосом человека:

Кариотип – совокупность совокупность хромосом соматической клетки, характеризующая организм данного вида. Хромосомы подразделяют на аутосомы и гетерохромосомы.

Идиограмма – систематизированный кариотип, в котором хромосомы располагаются по мере уменьшения их величины.

Строение и типы хромосом:

Хромосомы - структуры клетки, хранящие и передающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре.

Различают четыре типа строения хромосом:

Телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);

Акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);

Субметацентрические (с плечами неравной длины, напоминающие по форме букву L);

Метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода.

Характеристики гаплоидного и диплоидного набора хромосом:

Диплоидный набор хромосом организма называют кариотипом. Современные методы исследования позволяют определить каждую хромосому в кариотипе. Для этого учитывают распределение видимых под микроскопом светлых и темных полос (чередование AT и ГЦ-пар) в хромосомах, обработанных специальными красителями. Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, очень сходный характер чередования полос в хромосомах.

Г аплоидный набор хромосом (син.: гаметический набор хромосом, одинарный набор хромосом) - совокупность хромосом, присущая зрелой половой клетке, в которой из каждой пары характерных для данного биологического вида хромосом присутствует только одна; у человека Г. н. х. представлен 22 аутосомами и одной половой хромосомой.

Методы анализа фотокардиограмм: хз

Группы хромосом в кариотипе человека:

В группу А входят 3 пары наиболее крупных метацентрических хромосом (1-3).

В группу В (4-5) включены 2 пары субметацентрических хромосом.

Группа С (6-12) объединяет 7 пар аутосом среднего размера с субмедианно расположенной центромерой. Кроме того, половая хромосома X неотличима от аутосом этой группы и при раскладке стандартно окрашенных хромосом включается в состав группы С (6-Х-12).

В группе D (13-15) - 3 пары акроцентрических хромосом среднего размера.

В группе Е (16- 18) - одна пара хромосом (16) с медианной локализацией центромеры, пары 17-18 отличаются меньшей общей длиной и размерами коротких плеч.

В последних двух группах находятся самые мелкие хромосомы: метацентри- ческие - группа F (19-20) и акроцентрические - группа G (21-22).

Половая хромосома Y-акроцентрик, подобный хромосомам 21 и 22, но практически всегда может быть дифференцирована.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВИДЫ ХРОМОСОМ

Хромосомы - это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы хромосомы максимально развернуты, т. е., деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.

Метафазная хромосома состоит из двух продольных субъединиц - хроматид (электронная микроскопия выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 А, каждая из которых состоит из двух субъединиц).

Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,5-10 микрон.

Химической основой строения хромосом являются нуклеопротеиды - комплексынуклеиновых кислот с основными белками - гистонами и протаминами.

При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником. Индивидуальные хромосомы (рис. 1) различают по локализации первичной перетяжки, т. е., места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу).

Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип. В зрелых половых клетках, яйцеклетках и сперматозоидах содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного набора (2n), присущего хромосомам всех остальных клеток организма.

В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу.

Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом.

У человека и других млекопитающих женский пол определяется наличием двух Х-хромосом, а мужской - одной X-и одной Y-хромосомы (рис. 2 и 3).

В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде полового хроматина.

Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых! клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и Шерешевского - Тернера (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).

Хромосомы (от греч. chroma - окраска и soma - тело) - нитевидные, самовоспроизводящиеся структурные элементы клеточного ядра, содержащие в линейном порядке факторы наследственности - гены. Хромосомы отчетливо видны в ядре во время деления соматических клеток (митоза) и во время деления (созревания) половых клеток - мейоза (рис. 1). В том и в другом случае хромосомы интенсивно окрашиваются основными красителями, а также видны на неокрашенных цитологических препаратах в фазовом контрасте. В интерфазном ядре хромосомы деспирализованы и не видны в световой микроскоп, так как их поперечные размеры выходят за пределы разрешающей способности светового микроскопа. В это время отдельные участки хромосом в виде тонких нитей диаметром 100-500 А можно различить при помощи электронного микроскопа. Отдельные не деспирализовавшиеся участки хромосом в интерфазном ядре видны через световой микроскоп как интенсивно красящиеся (гетеропикнотические) участки (хромоцентры). Хромосомы непрерывно существуют в клеточном ядре, претерпевая цикл обратимой спирализации: митоз-интерфаза-митоз. Основные закономерности строения и поведения хромосом в митозе, мейозе и при оплодотворении одинаковы у всех организмов.

Хромосомная теория наследственности. Впервые хромосомы описали И.Д. Чистяков в 1874 г. и Страсбургер (Е. Strasburger) в 1879 г.

В 1901 г. Уилсон (Е.В. Wilson), а в 1902 г. Саттон (W.S. Sutton) обратили внимание на параллелизм в поведении хромосом и менделевских факторов наследственности - генов - в мейозе и при оплодотворении и пришли к выводу, что гены находятся в хромосомах. В 1915-1920 гг. Морган (Т.Н. Morgan) и его сотрудники доказали это положение, локализовали в хромосомах дрозофилы несколько сот генов и создали генетические карты хромосом. Данные о хромосомах, полученные в первой четверти 20 века, легли в основу хромосомной теории наследственности, согласно которой преемственность признаков клеток и организмов в ряду их поколений обеспечивается преемственностью их хромосомах. Химический состав и ауторепродукция хромосом. В результате цитохимических и биохимических исследований хромосом в 30 и 50-х годах 20 века установлено, что они состоят из постоянных компонентов (ДНК (см. Нуклеиновые кислоты), основных белков (гистонов или протаминов), негистонных белков) и переменных компонентов (РНК и связанного с ней кислого белка). Основу хромосом составляют дезоксирибонуклеопротеидные нити диаметром около 200 А (рис. 2), которые могут соединяться в пучки диаметром 500 А.

Открытие Уотсоном и Криком (J.D. Watson, F.Н. Crick) в 1953 г. строения молекулы ДНК, механизма ее авторепродукции (редупликации) и нуклеинового кода ДНК и развитие возникшей после этого молекулярной генетики привело к представлению о генах как участках молекулы ДНК. Вскрыты закономерности авторепродукции хромосом, оказавшиеся аналогичными закономерностям авторепродукции молекул ДНК (полуконсервативная редупликация).

Хромосомный набор - совокупность всех хромосом в клетке. Каждый биологический вид обладает характерным и постоянным набором хромосом, закрепленным в эволюции данного вида. Различают два основных типа наборов хромосом: одиночный, или гаплоидный (в половых клетках животных), обозначаемый n, и двойной, или диплоидный (в соматических клетках, содержащий пары сходных, гомологичных хромосом от матери и отца), обозначаемый 2n.

Наборы хромосом отдельных биологических видов значительно различаются по числу хромосом: от 2 (лошадиная аскарида) до сотен и тысяч (некоторые споровые растения и простейшие). Диплоидные числа хромосом некоторых организмов таковы: человека - 46, гориллы - 48, кошки - 60, крысы - 42, дрозофилы - 8.

Размеры хромосом у разных видов также различны. Длина хромосом (в метафазе митоза) варьирует от 0,2 мк у одних видов до 50 мк у других, а диаметр от 0,2 до 3 мк. морфология наследственный ауторепродукция

Морфология хромосом хорошо выражена в метафазе митоза. Именно метафазные хромосомы используют для идентификации хромосом. В таких хромосомах хорошо видны обе хроматиды, на которые продольно расщеплена каждая хромосома и центромер (кинетохор, первичная перетяжка), соединяющий хроматиды (рис. 3). Центромер виден как суженный участок, не содержащий хроматина, к нему крепятся нити ахроматинового веретена, благодаря чему центромер определяет движение хромосом к полюсам в митозе и мейозе.

Потеря центромера, например при разрыве хромосомы ионизирующими излучениями или другими мутагенами, приводит к потере способности куска хромосомы, лишенного центромера (ацентрический фрагмент), участвовать в митозе и мейозе и к потере его из ядра. Это может привести к тяжелому повреждению клетки. Центромер делит тело хромосомы на два плеча. Расположение центромера строго постоянно для каждой хромосомы и определяет три типа хромосом:

1) акроцентрические, или палочкообразные, хромосомы с одним длинным и вторым очень коротким плечом, напоминающим головку;

2) субметацентрические хромосомы с длинными плечами неравной длины;

3) метацентрические хромосомы с плечами одинаковой или почти одинаковой длины.

Характерными чертами морфологии определенных хромосом являются вторичные перетяжки (не обладающие функцией центромера), а также спутники - маленькие участки хромосом, соединенные с остальным ее телом тонкой нитью. Спутничные нити обладают способностью формировать ядрышки. Характерная структура в хромосоме (хромомеры) - утолщения или более плотно спирализованные участки хромосомной нити (хромонемы). Рисунок хромомер специфичен для каждой пары хромосом.

Число хромосом, их размеры и форма на стадии метафазы характерны для каждого вида организмов. Совокупность этих признаков набора хромосом называется кариотипом. Кариотип можно представить в виде схемы, называемой идиограммой (см. ниже хромосомы человека).

Половые хромосомы. Гены, детерминирующие пол, локализованы в специальной паре хромосом - половых хромосомах (млекопитающие, человек), в других случаях иол определяется соотношением числа половых хромосом и всех остальных, называемых аутосомами (дрозофила). У человека, как и у других млекопитающих, женский пол определяется двумя одинаковыми хромосомами, обозначаемыми как Х-хромосомы, мужской пол определяется парой гетероморфных хромосом: Х и Y.

В результате редукционного деления (мейоза) при созревании ооцитов у женщин все яйца содержат по одной Х-хромосоме. У мужчин в результате редукционного деления (созревания) сперматоцитов половина спермиев содержит Х-хромосому, а другая половина Y-хромосому. Пол ребенка определяется случайным оплодотворением яйцеклетки спермием, несущим Х или Y-хромосому. В результате возникает зародыш женского (XX) или мужского (XY) пола. В интерфазном ядре у женщин одна из Х-хромосом видна как глыбка компактного полового хроматина.

Функционирование хромосом и метаболизм ядра. Хромосомная ДНК является матрицей для синтеза специфических молекул информационной РНК. Этот синтез происходит тогда, когда данный участок хромосомы деспирализован. Примерами локальной активации хромосом служат: образование деспирализованных петель хромосом в ооцитах птиц, амфибий, рыб (так называемые Х-ламповые щетки) и вздутий (пуффов) определенных локусов Х. в многонитчатых (политенных) Х. слюнных желез и других секреторных органов двукрылых насекомых.

Примером инактивации целой хромосомы, т. е., выключения ее из метаболизма данной клетки, является образование одной из Х-хромосом компактного тела полового хроматина. Вскрытие механизмов функционирования политенных Х. типа ламповых щеток и других типов спирализации и деспирализации Х. имеет решающее значение для понимания обратимой дифференциальной активации генов.

Хромосомы человека. В 1922 г. Пейнтер (Т.S. Painter) установил диплоидное число хромосом человека (в сперматогониях), равное 48. В 1956 г. Тио и Леван (Н.J. Tjio, A. Levan) использовали комплекс новых методов исследования Х. человека: культуру клеток, исследование Х. без гистологических срезов на тотальных препаратах клеток, колхицин, приводящий к остановке митозов на стадии метафазы и накоплению таких метафаз, фитогемагглютинин, стимулирующий вступление клеток в митоз, обработку метафазных клеток гипотоническим солевым раствором. Все это позволило уточнить диплоидное число хромосом у человека (оно оказалось равным 46) и дать описание кариотипа человека.

В 1960 г. в Денвере (США) международная комиссия разработала номенклатуру хромосом человека. Согласно предложениям комиссии, термин «кариотип» следует применять к систематизированному набору Х. единичной клетки. Термин «идиотрамма» сохраняется для представления о наборе Х. в виде диаграммы, построенной на основании измерений и описания морфологии Х. нескольких клеток.

Х. человека пронумерованы (отчасти серийно) от 1 до 22 в соответствии с особенностями морфологии, допускающими их идентификацию. Все эти достижения создали прочную базу для развития цитогенетики человека.

Размещено на Allbest.ru

...

Подобные документы

    Ядро эукариотической клетки. Клетки, имеющие более двух наборов хромосом. Процесс деления у эукариот. Объединенные пары гомологичных хромосом. Онтогенез растительной клетки. Процесс разъединения клеток в результате разрушения срединной пластинки.

    реферат , добавлен 28.01.2011

    Исследование основных видов размножения: воспроизведения себе подобных, обеспечивающего непрерывность жизни. Понятие митоза – такого деления клеточного ядра, при котором образуется два дочерних ядра с набором хромосом, идентичных родительской клетки.

    презентация , добавлен 19.01.2011

    Понятие и функции в организме хромосомы как комплекса ДНК с белками (гистоновыми и негистоновыми). История разработки и содержание хромосомной теории наследственности. Типы хромосом в клетке в зависимости от фазы клеточного цикла, уровни организации.

    презентация , добавлен 11.11.2014

    Хромосомная теория наследственности. Генетический механизм определения пола. Поведение хромосом в митозе и мейозе. Классификация хромосом, составление идиограммы. Методы дифференциальной окраски хромосом. Структура хромосом и хромосомные мутации.

    реферат , добавлен 23.07.2015

    Эволюционное значение клеточного ядра - компонента эукариотической клетки, содержащего генетическую информацию. Структура ядра: хроматин, ядрышко, кариоплазма и ядерная оболочка. Функции ядра: хранение, передача и реализация наследственной информации.

    презентация , добавлен 21.02.2014

    Этапы развития генетики, ее связь с другими науками. Вклад отечественных учёных в ее развитие. Строение ядра и хромосом. Свойство хромосом и понятие о кариотипе. Особенности кариотипов разных видов с/х животных. Митоз, его биологическое значение.

    шпаргалка , добавлен 08.05.2009

    Клеточная теория Шлейдена и Шванна. Состав вирусов. Методы изучения клетки. Строение и функции ее поверхностного аппарата, мембраны, надмембранного комплекса, хромопластов, лейкопластов, рибосом, органелл, ядра, ядерной оболочки, кариоплазмы, хромосом.

    презентация , добавлен 13.11.2014

    Основные механизмы клеточного деления. Микротрубочки, образование веретена деления и метафаза. Правильное присоединение микротрубочек к кинетохорам. Обзор противоопухолевых препаратов. Использование особенностей механизма деления клетки в медицине.

    курсовая работа , добавлен 15.02.2016

    Организация наследственного материала прокариот. Химический состав эукариот. Общая морфология митотических хромосом. Структура, ДНК, химия и основные белки хроматина. Уровни компактизации ДНК. Методика дифференцированного окрашивания препаратов хромосом.

    презентация , добавлен 07.01.2013

    Хромосома как постоянный компонент ядра, отличающийся особой структурой, индивидуальностью. Схема строения хромосомы в поздней подфазе - метафазе митоза. Эухроматин, гетерохроматин, кариотип. Распределение хромосом согласно денверской номенклатуре.

Хромосомы - структуры клетки, хранящие и передающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре.

ДНК в хромосомах упакована таким образом, что умещается в ядре, диаметр которого обычно не превышает 5 мкм (5-10 -4 см). Упаковка ДНК приобретает вид петельной структуры, похожей на хромосомы типаламповых щеток амфибий или политенных хромосом насекомых. Петли поддерживаются с помощью белков, которые узнают определенные последовательности нуклеотидов и сближают их. Строение хромосомы лучше всего видно в метафазе митоза.

Хромосома представляет собой палочковидную структуру и состоит из двух сестринских хроматид, которые удерживаются центромерой в области первичной перетяжки. Каждая хроматида построена из хроматиновых петель. Хроматин не реплицируется. Реплицируется только ДНК.

Рис. 14. Строение и репликация хромосомы

С началом репликации ДНК синтез РНК прекращается. Хромосомы могут находиться в двух состояниях: конденсированном (неактивном) и деконденсированном (активном).

Диплоидный набор хромосом организма называют кариотипом. Современные методы исследования позволяют определить каждую хромосому в кариотипе. Для этого учитывают распределение видимых под микроскопом светлых и темных полос (чередование AT и ГЦ-пар) в хромосомах, обработанных специальными красителями. Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, очень сходный характер чередования полос в хромосомах.

Каждый вид организмов обладает постоянным числом, формой и составом хромосом. В кариотипе человека 46 хромосом - 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (ХУ), а женщины гомогаметны (XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей (например, аллеля свертываемости крови). Хромосомы одной пары называют гомологичными. Гомологичные хромосомы в одинаковых локусах несут аллельные гены.

1.14. Размножение в органическом мире

Размножение - это воспроизведение генетически сходных особей данного вида, обеспечивающее непрерывность и преемственность жизни.

Бесполое размножение осуществляется следующими путями:

  • простым делением на две или сразу на много клеток (бактерии, простейшие);
  • вегетативно (растения, кишечнополостные);
  • делением многоклеточного тела пополам с последующей регенерацией (морские звезды, гидры);
  • почкованием (бактерии, кишечнополостные);
  • образованием спор.

Бесполое размножение обычно обеспечивает увеличение численности генетически однородного потомства. Но когда ядра спор образуются в результате мейоза, потомство от бесполого размножения будет генетически разным.

Половое размножение - процесс, в котором объединяется генетическая информация от двух особей.

Особи разного пола образуют гаметы. Женские особи производят яйцеклетки, мужские - сперматозоиды, обоеполые особи (гермафродиты) производят и яйцеклетки, и сперматозоиды. А у некоторых водорослей сливаются две одинаковых половых клетки.

При слиянии гаплоидных гамет происходит оплодотворение и образование диплоидной зиготы.

Зигота развивается в новую особь.

Все вышеперечисленное справедливо только для эукариот. У прокариот тоже есть половой процесс, но происходит он по-другому.

Таким образом, при половом размножении происходит смешивание геномов двух разных особей одного вида. Потомство несет новые генетические комбинации, что отличает их от родителей и друг от друга.

Один из видов полового размножения - партеногенез, или развитие особей из неоплодотворенной яйцеклетки (тли, трутни пчел и др.).

Строение половых клеток

Яйцеклетки - круглые, сравнительно крупные, неподвижные клетки. Размеры - от 100 мкм до нескольких сантиметров в диаметре. Содержат все органоиды, характерные для эукариотической клетки, а также включения запасных питательных веществ в виде желтка. Яйцеклетка покрыта яйцевой оболочкой, состоящей в основном из гликопротеидов.

Рис. 15. Строение яйцеклетки птицы : 1 - халаза; 2 - скорлупа; 3 - воздушная камера; 4 - наружная подскорлуновая оболочка; 5 - жидкий белок; 6 - плотный белок; 7 - зародышевый диск; 8 - светлый желток; 9 - темный желток.

У мхов и папоротников яйцеклетки развиваются в архегониях, у цветковых растений - в семяпочках, локализованных в завязи цветка.

Яйцеклетки подразделяют следующим образом:

  • изолецитальные - желток распределен равномерно и его немного (у червей, моллюсков);
  • алецитальные - почти лишены желтка (млекопитающие);
  • телолецитальные - содержат много желтка (рыбы, птицы);
  • полилецитальные - содержат значительное количество желтка.

Овогенез - образование яйцеклеток у самок.

В зоне размножения находятся овогонии - первичные половые клетки, размножающиеся митозом.

Из овогониев после первого мейотического деления образуются овоциты первого порядка.

После второго мейотического деления образуются овоциты второго порядка, из которых формируется одна яйцеклетка и три направительных тельца, которые затем гибнут.

Сперматозоиды - мелкие, подвижные клетки. В них выделяют головку, шейку и хвост.

В передней части головки находится акросомальный аппарат - аналог аппарата Гольджи. В нем содержится фермент (гиалуронидаза), растворяющий оболочку яйцеклетки при оплодотворении. В шейке расположены центриоли и митохондрии. Жгутики сформированы из микротрубочек. При оплодотворении в яйцеклетку попадают только ядро и центриоли сперматозоида. Митохондрии и другие органоиды остаются снаружи. Поэтому цитоплазматическая наследственность у людей передается только по женской линии.

Половые клетки животных и растений, размножающихся половым путем, образуются в результате процесса, называемого гаметогенезом.