Реакция замещения присоединения. Классификация реакций в органической химии

Разделение химических реакций на органические и неорганические является довольно условным. К типичным органическим реакциям относят те, в которых участвует хотя бы одно органическое соединение, которое в ходе реакции изменяет свою молекулярную структуру. Поэтому реакции, в которых молекула органического соединения выступает в качестве растворителя или лиганда, к типичным органическим реакциям не относятся.

Органические реакции, так же, как и неорганические, могут быть классифицированы по общим признакам на реакции переноса:

– единичного электрона (окислительно-восстановительные);

– электронных пар (реакции комплексообразования);

– протона (кислотно-основные реакции);

– атомных групп без изменения числа связей (реакции замещения и перегруппировки);

– атомных групп с изменением числа связей (реакции присоединения, элиминирования, разложения).

Вместе с тем, многообразие и своеобразие органических реакций приводит к необходимости их классификации и по другим признакам:

– изменению числа частиц в ходе реакции;

– характеру разрыва связей;

– электронной природе реагентов;

– механизму элементарных стадий;

– типу активирования;

– частным признакам;

– молекулярности реакций.

1) По изменению числа частиц в ходе реакции (или по типу превращения субстрата) различают реакции замещения, присоединения, элиминирования (отщепления), разложения и перегруппировки.

В случае реакций замещения один атом (или группа атомов) в молекуле субстрата замещается другим атомом (или группой атомов), в результате чего образуется новое соединение:

СН 3 СН 3 + С1 2  СН 3 СН 2 С1 + НC1

этан хлор хлорэтан хлороводород

СН 3 СН 2 С1 + NaOH (водный р-р)  СН 3 СН 2 ОН + NaC1

хлорэтан гидроксид натрия этанол хлорид натрия

В символе механизма реакции замещения обозначаются латинской буквой S (от англ. «substitution» – замещение).

При протекании реакций присоединения из двух (или нескольких) молекул образуется одно новое вещество. При этом реагент присоединяется по кратной связи (С= С, СС, С= О, СN) молекулы субстрата:

CH 2 = CH 2 + HBr → CH 2 Br СH 3

этилен бромоводород бромэтан

С учетом символики механизма процессов реакции присоединения обозначаются буквой A или сочетанием Ad (от англ. «addition» – присоединение).

В результате реакции элиминирования (отщепления) от субстрата отщепляется молекула (или частица) и образуется новое органическое вещество, содержащее кратную связь:

СН 3 СН 2 ОН СН 2 = СН 2 + Н 2 О

этанол этилен вода

В символе механизма реакции замещения обозначаются буквой E (от англ. «elimination» – элиминирование, отщепление).

Реакции разложения протекают, как правило, с разрывом связей углерод – углерод (СС) и приводят к образованию из одного органическоговещества двух или более веществ более простого строения:

СН 3 СН(ОН) СООН
СН 3 СНО + HCООН

молочная кислота ацетальдегид муравьиная кислота

Перегруппировка – реакция, в ходе которой структура субстрата меняется с образованием продукта, который является изомерным исходному, то есть без изменения молекулярной формулы. Этот тип превращения обозначают латинской буквой R (от английского «rearrangement» – перегруппировка).

Например, 1-хлорпропан перегруппировывается в изомерное соединение 2-хлорпропан в присутствии хлорида алюминия, выступающего в качестве катализатора.

СН 3 СН 2 СН 2 С1  СН 3 СНС1 СН 3

1-хлорпропан 2-хлорпропан

2) По характеру разрыва связей различают гомолитические (радикальные), гетеролитические (ионные) и синхронные реакции.

Ковалентная связь между атомами может быть разорвана таким образом, что электронная пара связи делится между двумя атомами, образующиеся частицы получают по одному электрону и становятся свободными радикалами – говорят, что происходит гомолитическое расщепление. Новая связь при этом образуется за счёт электронов реагента и субстрата.

Радикальные реакции особенно распространены в превращениях алканов (хлорирование, нитрование и др.).

При гетеролитическом способе разрыва связи общая электронная пара передаётся одному из атомов, образовавшиеся частицы становятся ионами, обладают целочисленным электрическим зарядом и подчиняются законам электростатического притяжения и отталкивания.

Гетеролитические реакции по электронной природе реагентов подразделяются на электрофильные (например, присоединение по кратным связям в алкенах или замещение водорода в ароматических соединениях) и нуклеофильные (например, гидролиз галогенпроизводных или взаимодействие спиртов с галогеноводородами).

Каков механизм реакции – радикальный или ионный, можно установить, изучив экспериментальные условия, благоприятствующие течению реакции.

Так, радикальные реакции, сопровождающиеся гомолитическим разрывом связи:

– ускоряются при облучении h, в условиях высоких температур реакции в присутствии веществ, легко разлагающихся с образованием свободных радикалов (например, перекиси);

– замедляются в присутствии веществ, легко реагирующих со свободными радикалами (гидрохинон, дифениламин);

– обычно проходят в неполярных растворителях или газовой фазе;

– часто являются автокаталитическими и характеризуются наличием индукционного периода.

Ионные реакции, сопровождающиеся гетеролитическим разрывом связи:

– ускоряются в присутствии кислот или оснований и не подвержены влиянию света или свободных радикалов;

– не подвержены влиянию акцепторов свободных радикалов;

– на скорость и направление реакции влияет природа растворителя;

– редко идут в газовой фазе.

Синхронные реакции протекают без промежуточного образования ионов и радикалов: разрыв старых и образование новых связей происходят синхронно (одновременно). Примером синхронной реакции является диеновый синтез – реакция Дильса-Альдера.

Обратите внимание, особая стрелка, которую применяют для обозначения гомолитического разрыва ковалентной связи, означает перемещение одного электрона.

3) В зависимости от электронной природы реагентов реакции подразделяют на нуклеофильные, электрофильные и свободнорадикальные.

Свободные радикалы – это электронейтральные частицы, имеющие неспаренные электроны, например: Cl  ,  NO 2 ,
.

В символе механизма реакции радикальные реакции обозначаются нижним индексом R.

Нуклеофильные реагенты – это одно- или многоатомные анионы или электронейтральные молекулы, имеющие центры с повышенным частичным отрицательным зарядом. К ним относятся такие анионы и нейтральные молекулы, как HO – , RO – , Cl – , Br – , RCOO – , CN – , R – , NH 3 , C 2 H 5 OH и т.д.

В символе механизма реакции радикальные реакции обозначаются нижним индексом N.

Электрофильные реагенты – это катионы, простые или сложные молекулы, которые сами по себе или же в присутствии катализатора обладают повышенным сродством к электронной паре или отрицательно заряженным центрам молекул. К ним относятся катионы H + , Cl + , + NO 2 , + SO 3 H, R + и молекулы со свободными орбиталями: AlCl 3 , ZnCl 2 и т.п.

В символе механизма электрофильные реакции обозначаются нижним индексом E.

Нуклеофилы представляют собой доноры электронов, а электрофилы – их акцепторы.

Электрофильные и нуклеофильные реакции можно рассматривать как кислотно-основные; в основе такого подхода лежит теория обобщённых кислот и оснований (кислоты Льюиса – это акцептор электронной пары, основание Льюиса – донор электронной пары).

Однако следует различать понятия электрофильности и кислотности, так же как нуклеофильности и основности, ибо они не идентичны. Например, основность отражает сродство к протону, а нуклеофильность оценивается чаще всего как сродство к атому углерода:

ОН – + Н +  Н 2 О гидроксид-ион как основание

ОН – + СН 3 +  СН 3 ОН гидроксид-ион как нуклеофил

4) В зависимости от механизма элементарных стадий реакции органических соединений могут быть самыми различными: нуклеофильное замещение S N , электрофильное замещение S E , свободнорадикальное замещение S R , парное отщепление, или элиминирование Е, нуклеофильное или электрофильное присоединение Ad E и Ad N и т. д.

5) По типу активирования реакции подразделяют на каталитические, некаталитические и фотохимические.

Каталитическими называют реакции, протекание которых требует присутствия катализатора. Если в качестве катализатора выступает кислота, речь идёт о кислотном катализе. К кислотно-катализируемым относят, например, реакции этерификации с образованием сложных эфиров, дегидратации спиртов с образованием непредельных соединений и т.д.

Если катализатором является основание, то говорят об основном катализе (как показано ниже, это характерно для метанолиза триацилглицеринов).

Некаталитическими являются реакции, которые не требуют присутствия катализатора. Они ускоряются только при повышении температуры, поэтому их иногда называют термическими, хотя этот термин не используется широко. Исходными реагентами в этих реакциях служат высокополярные или заряженные частицы. Это могут быть, например, реакции гидролиза, кислотно-основные взаимодействия.

Фотохимические реакции активируются облучением (фотонами, h); эти реакции не протекают в темноте даже при значительном нагревании. Эффективность процесса облучения измеряется квантовым выходом, который определяется как число прореагировавших молекул реагента на один поглощённый квант света. Некоторые реакции характеризуются квантовым выходом меньше единицы, для других, например для цепных реакций галогенирования алканов, этот выход может достигать 10 6 .

6) По частным признакам классификация реакций чрезвычайно разнообразна: гидратация и дегидратация, гидрирование и дегидрирование, нитрование, сульфирование, галогенирование, ацилирование, алкилирование, карбоксилирование и декарбоксилирование, енолизация, замыкание и размыкание циклов, изомеризация, окислительная деструкция, пиролиз, полимеризация, конденсация и др.

7) Молекулярность органической реакции определяют по числу молекул, в которых происходит реальное изменение ковалентных связей на самой медленной стадии реакции, определяющей её скорость. Различают следующие виды реакций:

– мономолекулярные – в лимитирующей стадии участвует одна молекула;

– бимолекулярные – таких молекул две и т.д.

Молекулярности выше трех, как правило, не бывает. Исключение составляют топохимические (твердофазные) реакции.

Молекулярность отражают в символе механизма реакции, добавляя соответствующую цифру, например: S N 2 – замещение нуклеофильное бимолекулярное, S E 1 – замещение электрофильное мономолекулярное; Е1 – элиминирование мономолекулярное и т.д.

Рассмотрим несколько примеров.

Пример 1 . Атомы водорода в алканах могут быть замещены на атомы галогенов:

СН 4 + С1 2  СН 3 С1 + НC1

Реакция идет по цепному радикальному механизму (атакующая частица – радикал хлора C1 ). Значит по электронной природе реагентов это реакция свободнорадикальная; по изменению числа частиц – реакция замещения; по характеру разрыва связи – гомолитическая реакция; тип активирования – фотохимический или термический; по частным признакам – галогенирование; механизм реакции – S R .

Пример 2 . Атомы водорода в алканах могут быть замещены на нитрогруппу. Эта реакция носит название реакции нитрования и идет по схеме:

RH + HОNО 2  RNО 2 + Н 2 О

Реакция нитрования в алканах также идет по цепному радикальному механизму. Значит по электронной природе реагентов это реакция свободнорадикальная; по изменению числа частиц – реакция замещения; по характеру разрыва связи – гомолитическая; тип активирования – термический; по частным признакам – нитрование; по механизму – S R .

Пример 3 . Алкены легко присоединяют по двойной связи галогеноводород:

CH 3 CH = CH 2 + HBr → CH 3 CHBr СH 3 .

Реакция может идти по механизму электрофильного присоединения, а значит, по электронной природе реагентов – реакция электрофильная (атакующая частица - Н +); по изменению числа частиц – реакция присоединения; по характеру разрыва связи – гетеролитическая; по частным признакам – гидрогалогенирование; по механизму – Ad E .

Эта же реакция в присутствии перекисей может идти по радикальному механизму, тогда по электронной природе реагентов – реакция будет радикальной (атакующая частица – Br ); по изменению числа частиц – реакция присоединения; по характеру разрыва связи – гомолитическая; по частным признакам – гидрогалогенирование; по механизму – Ad R .

Пример 4 . Реакция щелочного гидролиза алкилгалогенидов протекает по механизму бимолекулярного нуклеофильного замещения.

СН 3 СН 2 I + NaОН  СН 3 СН 2 ОН + NaI

Значит, по электронной природе реагентов – реакция нуклеофильная (атакующая частица – ОН –); по изменению числа частиц – реакция замещения; по характеру разрыва связи – гетеролитическая, по частным признакам – гидролиз; по механизму – S N 2.

Пример 5 . При взаимодействии алкилгалогенидов со спиртовыми растворами щелочей образуются алкены.

СН 3 СН 2 СН 2 Br
[СН 3 СН 2 С + Н 2 ]  СН 3 СН= СН 2 + H +

Это объясняется тем, что образующийся карбкатион стабилизируется не присоединением иона гидроксила, концентрация которого в спирте незначительна, а отщеплением протона от соседнего атома углерода. Реакция по изменению числа частиц – отщепление; по характеру разрыва связи – гетеролитическая; по частным признакам – дегидрогалогенирование; по механизму – элиминирование Е.

Контрольные вопросы

1. Перечислите признаки, по которым классифицируют органические реакции.

2. Как можно классифицировать следующие реакции:

– сульфирование толуола;

– взаимодействие этанола и серной кислоты с образованием этилена;

– бромирование пропена;

– синтез маргарина из растительного масла.

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №19»

г.Мичуринска Тамбовской области

Типы химических реакций

в органической химии

Головкина Светлана Александровна,

учитель химии МБОУ СОШ №19 г.Мичуринска

Содержание

Аннотация……………………………………………………………………….3

Введение…………………………………………………………………………4

Спецификация тестов…………………………………………………………...5

Тесты 9 класс ………………………………………………………………15

Тесты 11 класс …………………………………………………………………24

Информационные ресурсы……………………………………………………..33

Аннотация.

В данной работе отражен подход авторов к изучению типов химических реакций в органической химии. Предлагаемый материал может быть интересен учителям химии, работающим в основной и полной общеобразовательной школе, так как он дает обобщение основным понятиям типов химических реакций в органической химии, которые позволят осуществить подготовку к ГИА И ЕГЭ и отработать материал по данной теме.

Введение.

Материал органической химии сложен для понимания, особенно в 9 классе, где на его изучение отводится очень мало времени, при большом объеме теоретического материала. Вопросы по органической химии включены в КИМы ГИА и ЕГЭ, при подготовки обучающихся к итоговой аттестации учитель часто сталкивается с непониманием данного материала. Интенсифицировать процесс преподавания и повысить качество усвоения органической химии можно активно, используя при его изучении современные технологии обучения, например, применение ИКТ, технологии тестового контроля. В пособии учителя делятся своим опытом при изучении небольшого, но сложного материала.

Спецификация тестов по подготовке к ГИА и ЕГЭ

    Назначение тестов – оценить общеобразовательную подготовку обучающихся по типам химических реакций.

    Преемственность содержания материала тестов – показать взаимосвязь базовых понятий неорганической и органической химии.

    Характеристика содержания тестов – каждый вариант тестового контроля состоит из трех частей и заданий. Одинаковые по уровню сложности и форме представления задания сгруппированы в определенных частях работы.

Часть А содержит 10 заданий на выбор ответа базового уровня сложности А1, А2 ….А10

Часть В содержит 3 задания на выбор ответа повышенного уровня сложности В1, В2, В3

ЧастьС содержит 1 задание высокого уровня сложности.

Таблица 1 Распределения заданий по частям работы.

Задания с выбором ответа проверяют основную часть изученного материала: язык химической науки, химические связи, знание свойств органических веществ, типы и условия протекания химических реакций.

Задания повышенного уровня сложности проверяют на повышенном уровне знания об окислительно- восстановительных реакциях. В работе предлагаются задания с выбором нескольких ответов.

Выполнение заданий повышенного уровня сложности позволяет осуществлять дифференциацию обучающихся по уровню их подготовки и на этой основе выставлять им более высокие оценки.

Задания с развернутым ответом – наиболее сложные в тесте. Эти задания проверяют усвоение следующих элементов содержания: количество вещества, молярный объем и молярная масса вещества, массовая доля растворенного вещества.

4.Распределение заданий контрольной работы по содержанию, проверяемым умениям и видам деятельности.

При определении содержания проверочных заданий контрольной работы учитывалось, какой объем каждой из содержательных блоков занимает в курсе химии

5.Время выполнения работы

На выполнение контрольной работы отводится 45 минут (1 урок)

Примерное распределение времени, отводимого на выполнение отдельных заданий:

    для каждого задания части А до 2 мин.

    для каждого задания части В до 5 мин.

    для каждого задания части С до 10 мин.

6. Система оценивания отдельных заданий и работы в целом

Верное выполнение каждого задания части А оценивается 1 баллом.

Верное выполнение каждого задания части В оценивается 2 баллами;

допущена ошибка в одном из элементов ответа- 1 балл.

Выполнение заданий части С имеет вариативный характер, правильное и полное выполнение задания С1 - 4 балла,

Полученные обучающимися баллы за выполнение всех заданий суммируются. Оценка выставляется по пятибалльной шкале.

7. Градация оценки:

0 % - 25% - от набранных баллов «1»

26% - 50% - от набранных баллов «2»

51% - 75% - от набранных баллов «3»

76% - 85% - от набранных баллов «4»

86% - 100% - от набранных баллов «5»

Типы химических реакций в органической химии

Химическая реакция - это такое изменение веществ, при котором разрываются старые и образуются новые химические связи между частицами (атомами, ионами), из которых построены вещества.

Химические реакции классифицируются:

1. По числу и составу реагентов и продуктов

К этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ.

Реакции разложения в органической химии, в отличие от реакций разложения в неорганической химии, имеют свою специфику. Их можно рассматривать как процессы, обратные присоединению, поскольку в результате чаще всего образуются кратные связи или циклы.

CH3-CH2-С=-СН СН3-С=-С-СН3

этилацетилен диметнлацетилен

Для того чтобы вступить в реакцию присоединения, органическая молекула должна иметь кратную связь (или цикл), эта молекула будет главной (субстрат). Молекула попроще (часто неорганическое вещество, реагент) присоединяется по месту разрыва кратной связи или раскрытия цикла.

чаще всего образуются кратные связи или циклы.

Их отличительный признак - взаимодействие простого вещества со сложным. Понятие «замещение» в органике шире, чем в неорганической химии. Если в молекуле исходного вещества какой-либо атом или функциональная группа заменяются на другой атом или группу, это тоже реакции замещения.

Реакции обмена - реакции, протекающие между сложными веществами, при которых их составные части обмениваются местами. Обычно эти реакции рассматривают как ионные. Реакции между ионами в растворах электролитов идут практически до конца в сторону образования газов, осадков, слабых электролитов.

2. По тепловому эффекту

Экзотермические реакции протекают с выделением энергии.

К ним относятся почти все реакции соединения.

Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения. Гидрирование этилена - пример экзотермической реакции. Она идет при комнатной температуре.

Эндотермические реакции протекают с поглощением энергии.

Очевидно, что к ним будут относиться почти все реакции разложения,

СН 2 =СН 2 + Н 2 → СН 3 -СН 3

3. По использованию катализатора

Идут без участия катализатора.

Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы - ферментов, все они относятся к каталитическим или, точнее, ферментативным.

4. По направлению

Протекают одновременно в двух противоположных направлениях.

Таких реакций подавляющее большинство.

В органической химии признак обратимости отражают названия - антонимы процессов:

гидрирование - дегидрирование,

гидратация - дегидратация,

полимеризация - деполимеризация.

Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость этих процессов лежит в основе важнейшего свойства живого организма - обмена веществ.

Протекают в данных условиях только в одном направлении.

К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.

5. По агрегатному состоянию

Реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах).

Реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе).

6. По изменению степеней окисления химических элементов, образующих вещества

Реакции, идущие без изменения степеней окисления химических элементов. К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, многие реакции разложения, реакции этерификации

Реакции, идущие с изменением степеней окисления элементов. К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество.

НСООН + CH 3 OH → НСООСН3 + H2O

7. По механизму протекания.

Идут между образующимися в ходе реакции радикалами и молекулами.

Как вы уже знаете, при всех реакциях происходит разрыв старых и образование новых химических связей. Способ разрыва связи в молекулах исходного вещества определяет механизм (путь) реакции. Если вещество образовано за счет ковалентной связи, то могут быть два способа разрыва этой связи: гемолитический и гетеролитический. Например, для молекул Сl2, СН4 и т. д. реализуется гемолитический разрыв связей, он приведет к образованию частиц с неспаренными электронами, то есть свободных радикалов.

Идут между уже имеющимися или образующимися в ходе реакции ионами.

Типичные ионные реакции - это взаимодействие между электролитами в растворе. Ионы образуются не только при диссоциации электролитов в растворах, но и под действием электрических разрядов, нагревания или излучений. Ŷ-Лучи, например, превращают молекулы воды и метана в молекулярные ионы.

По другому ионному механизму происходят реакции присоединения к алкенам галогеноводородов, водорода, галогенов, окисление и дегидратация спиртов, замещение спиртового гидроксила на галоген; реакции, характеризующие свойства альдегидов и кислот. Ионы в этом случае образуются при гетеролитическом разрыве ковалентных полярных связей.

8. По виду энергии, инициирующей реакцию.

Они инициируются излучениями большой энергии - рентгеновскими лучами, ядерными излучениями (Ý-лучами, а-частицами - Не2+ и др.). С помощью радиационных реакций проводят очень быструю радиополимеризацию, радиолиз (радиационное разложение) и т. д.

Например, вместо двухстадийного получения фенола из бензола его можно получать взаимодействием бензола с водой под действием радиационных излучений. При этом из молекул воды образуются радикалы [·OН] и [·H·], с которыми и реагирует бензол с образованием фенола:

С6Н6 + 2[ОН] -> С6Н5ОН + Н20

Вулканизация каучука может быть проведена без серы с использованием радиовулканизации, и полученная резина будет ничуть не хуже традиционной

Их инициирует тепловая энергия. К ним относятся все эндотермические реакции и множество экзотермических реакций, для начала которых необходима первоначальная подача теплоты, то есть инициирование процесса.

Их инициирует световая энергия. Кроме рассмотренных выше фотохимических процессов синтеза НСl или реакции метана с хлором, к ним можно отнести получение озона в тропосфере как вторичного загрязнителя атмосферы. К этому виду реакций принадлежит и важнейший процесс, протекающий в растительных клетках, - фотосинтез.

Их инициирует электрический ток. Помимо хорошо известных вам реакций электролиза укажем также реакции электросинтеза, например, реакции промышленного получения неорганических окислителей.

Тестовые задания для 9 класса

Вариант 1.

Часть А

А1. Какие модели соответствуют молекулам алкенов?

а) все, кроме А

б) все, кроме Б

в) все, кроме В

г) все, кроме Г

А2. С каким реагентом могут взаимодействовать алканы:

а) Br 2 (р-р)

б) Cl 2 ,(свет)

в) H 2 SO 4
г) NaOH

А3. В реакции 1,3-бутадиена с HCl не может образоваться

а) 3-хлорбутен-1 в) 1-хлорбутен-2

б) 4-хлорбутен-1 г) 2,3-дихлорбутан

А4. Вещество, с которым муравьиная кислота при соот­ветствующих условиях вступает в окислительно-вос­становительную реакцию, - это:

а) медь;

б) гидроксид меди (II);

в) хлорид меди (II);

г) сульфат меди (II).

А5. Взаимодействие сложного эфира с водой можно на­звать:

а) гидратацией;

б) дегидратацией;

в) гидролизом;

г) гидрогенизацией.

А6. В цепочке превращений

реакции «а» и «б» - это соответственно:

а) гидратация и окисление;

б) окисление и гидратация;

в) гидратация и гидратация;

г) окисление и окисление.

А7. Реакция, обусловленная наличием в молекулах кар­бонильных соединений двойной связи, - это реак­ция:

а) присоединения;

б) разложения;

в) замещения;

г) обмена.

А8. С помощью аммиачного раствора оксида серебра нель­зя распознать:

а) этанол и этаналь;

б) пропаналь и пропанон;

в) пропаналь и глицерин;

г) бутаналь и 2-метилпропаналь.

А9. При действии на пропеналь избытка водорода образу­етс я:

а) предельный спирт;

б) непредельный спирт;

в) непредельный углеводород;

г) предельный углеводород.

А10. Уксусный альдегид образуется при гидратации:

а) этана;

б) этена;

в) этина;

г) этанола.

Часть В

В1. Установите соответствие между типом реакции и уравнением

ТИП РЕАКЦИИ

В2. Ацетилен массой 10,4 г присоединил хлороводород массой 14,6 г. Формула продукта реакции_____.

В3. Из технического карбида кальция массой 1 кг получен ацетилен объемом 260 л (н.у.). Массовая доля примесей (в %), содержащихся в образце карбида кальция равна_________. (Запишите ответ с точностью до сотых).

Часть С.

C 1. Напишите уравнения реакций с помощью которых можно осуществить следующие

BaCl 2

превращения: С O

Вариант 2.

Часть А К каждому из заданий А1-А10 дано четыре варианта ответа,

только один из которых правильный. Обведите номер ответа.

А1.Реакция характерная для алканов

а)присоединении

б)замещение

в)гидротации

г)обмена

А2. Для каких углеводородов характерна реакция полимеризации.

а) CH 4

б) C 2 H 4

в) C 6 H 6

г) C 2 H 5 ОH

А3. Вещество, с которым метан вступает в реакцию замещения.

а) CL 2 (свет)

б) H 2 О

в) H 2 SO 4

г) NaOH

А4. Какое вещество легко окисляется перманганатом калия.

а) C 2 H 6

б) C 2 H 2

в) C 2 H 5 ОH

г) C 6 H 6

А5. Какое вещество можно подвергать реакции дегидратации.

а) C 2 H 4

б) C 2 H 5 ОH

в) CH 4

г) С H 3 COH

А6. В цепочке превращений C 2 H 6 – ацетилен – этан реакции «а» и «б»- это соответствует

а) гидротация и гидрирование

б) гидротация и окисление

в) дегидрирование и гедрирование

г) окисление и гидротация

А7. Как называется реакция образования сложных эфиров.

а) присоединения

б)замещения

в) этерификации

г) разложения

А8. При взаимодействии этилена с водой образуется.

а) предельный спирт

б) непределдьный спирт

в) предельный углеводород

г) непредельный углеводород

А9. Уксусная кислота образуется из:

а) этана

б) этена

в) этина

г) этанола

А10. Какая реакция характерна для жиров.

а) присоединения

б) окисления

в) гидролиза

г) замещения

Часть В При выполнении заданий В1 установите соответствие. В2 и В3 произведите расчеты и запишите ответ.

В1. Установите соответствие между типом реакции и веществом

Тип реакции

В2. Объем кислорода, необходимый для полного сжигания 50 л. метана (н.у.) равен ___л.

В3. Углеводород содержит 16,28 % водорода. Определите формулу углеводорода, если плотность его паров по водороду равна 43.

Часть С. Для ответов на задание С1 используйте отдельный бланк (лист)

Запишите номер задания и ответ к нему.

С1. Вычислите объем углекислого газа, выделившегося при сгорании 56 л метана в 48 л кислорода

ОТВЕТЫ

Вариант 1

Часть А

Часть В

Часть С

Напишите уравнения реакций с помощью которых можно осуществить следующие BaCl 2

превращения: С O 2 → Na 2 СО 3 → X → СО 2 . Для второго процесса составьте ионное уравнение реакции.

Ответ

Вариант 2

Часть А

А1


Часть В

Часть С

Тестовые задания для 11 класса

Вариант 1.

Часть А К каждому из заданий А1-А10 дано четыре варианта ответа,

только один из которых правильный. Обведите номер ответа.

А1. Реакция Вюрца соответствует описанию:

1. гидратации ацетилена

2. удлинению углеродного скелета

3. восстановлению нитропроизводных металлами в кислой среде

4. одновременной дегидратации и дегидрированию этанола

А2. Глюкозу и сахарозу можно различить с помощью:

1. азотной кислоты

2. аммиачного раствора оксида серебра

3. воды

4. гидроксида натрия.

А3. Этанол можно получить из этилена посредством реакции

1. гидратации

2. гидрирования

3. галогенирования

4. гидрогалогенирования

А4. Реакция с аммиачным раствором оксида серебра характерна для

1. пропанола-1

2. пропаналя

3. пропанола-2

4. диметилового эфира

А5. При щелочном гидролизе этилформиата образуются

1. формальдегид и этанол

2. муравьиная кислота и этанол

3. соль муравьиной кислоты и этанол

4. формальдегид и муравьиная кислота

А6. Отличительным признаком реакции Кучерова является взаимодействие веществ с

1. с водородом

2. с хлором

3. с водой

4. с кислотой

А7. Реакция Зинина, характерная для ароматических углеводородов, имеет другое название

1. хлорирование

2. бромирование

3. нитрование

4. гидрирование

А8. Качественной реакцией на многоатомные спирты является их взаимодействие

1. с оксидом меди (II )

2. с гидроксидом меди (II )

3. с медью

4. с оксидом меди (I )

А9. В ходе реакции этанола с соляной кислотой в присутствии серной кислоты образуется

1. этилен

2. хлорэтан

3. 1,2-дихлорэтан

4. хлорвинил

А10. В отличииот этаналя уксусная кислота взаимодействует с

1. магнием

2. гидроксидом меди (II )

3. кислородом

4. водородом

Часть В

запишите их по возрастанию

В1. Продуктами гидролиза сложных эфиров состава С 5 Н 10 О 2 могут быть

1. пентаналь и метанол

2. пропановая кислота и этанол

3. этанол и бутаналь

4. бутановая кислота и метанол

5. этановая кислота и пропанол

6. формальдегид и пентанол

В2. С муравьиной кислотой взаимодействуют

1. Na 2 CO 3

2. HCl

3. OH

4. H 2 S

5. CuSO 4

6. Cu (OH) 2

В3. Вещества, с которыми способна взаимодействовать α-аминопропановая кислота

1. этан

2. гидроксид калия

3. хлорид калия

4. серная кислота

5. диметиловый эфир

6. хлороводород

Часть С. Для ответов на задание С1 используйте отдельный бланк (лист)

Запишите номер задания и ответ к нему.

С1. В результате каталитического окисления пропана получена пропионовая кислота массой 55,5 г. Массовая доля выхода продукта реакции равна 60%. Рассчитайте объём взятого пропана (н.у.).

Вариант 2

Часть А К каждому из заданий А1-А10 дано четыре варианта ответа,

только один из которых правильный. Обведите номер ответа.

А1. В реакцию с бромной водой при обычных условиях взаимодействует каждое из двух веществ:

1. бензол и толуол

2. циклогексан и пропен

3. этилен и бензол

4. фенол и ацетилен

А2 . Этилен образуется в результате реакции:

1. гидратации ацетилена

2. хлорметана с натрием

3. ацетилена с хлороводородом

4. дегидратации этанола

А3 . Этанол можно получить из этилена в результате реакции

1. гидратации

2. гидрирования

3. галогенирования

4. гидрогалогенирования

А4 . В результате реакции тримеризации ацетилена образуеться:

1. гексан

2. гексен

3. этан

4. бензол

А5. При окислении этилена водным раствором КМ nO 4 образуется:

1. этан

2. этанол

3. глицерин

4. этиленгликоль

А6. При щелочном гидролизе 2-хлорбутана преимущественно образуются:

1. бутанол-2

2. бутанол-1

3. бутаналь

4. бутанон

А7 . В реакцию замещения с хлором вступает:

1. этен 2. этин 3 . бутен-2 4. бутан

А8 . Характерной реакцией для многоатомных спиртов является взаимодействие с:

1. H 2

2. Cu

3. Ag 2 O (NH 3 р-р)

4. Cu (OH) 2

А9. Мономером для получения искусственного каучука по способу Лебедева служит:

1. бутен-2

2. этан

3. этилен

4. бутадиен-1,3

А10. Бутанол-2 и хлорид калия образуются при взаимодействии:

1. 1-хлорбутана и 2-хлорбутана

2. 2-хлорбутана и спиртового раствора КОН

3. 1-хлорбутана и спиртового раствора КОН

4. 2-хлорбутана и водного раствора КОН

Часть В При выполнении заданий В1- В3 выберите три варианта ответов и

запишите их по возрастанию

В1. Продуктами гидролиза сложных эфиров состава С 6 Н 12 О 2 могут быть

1 . этаналь и диметиловый эфир

2 . пропановая кислота и пропанол

3 . метилацетат и бутан

4 . этановая кислота и бутанол

5. пентановая кислота и метанол

6. пропаналь и этандиол

В2. Алкены взаимодействуют с:

1 . [ Ag (NH 3) 2 ]OH

2 . H 2 O

3 . Br 2

4 . KMnO 4 (H +)

5 . Ca(OH) 2

6 . Cu (OH) 2

В3. Метилэтиламин взаимодействует с:

1 . этаном

2 . гидроксидом калия

3. бромоводородной кислотой

4 . кислородом

5 . пропаном

6 . водой

Часть С. Для ответов на задание С1 используйте отдельный бланк (лист)

Запишите номер задания и ответ к нему.

С1. Газообразный аммиак, выделившийся при кипячении 160г 7-% -ного раствора гидроксида калия с 9,0г. Хлорида аммония, растворили в 75г воды. Определите массовую долю аммиака в полученном растворе.

ОТВЕТЫ

Вариант 1

Часть А

А1

Часть В

В1

Часть С

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)

Элементы ответа:

1. Составлено уравнение реакции

3С 2 Н 2
С 6 Н 6

2. Определены количества вещества ацетилена и бензола

n (C 2 H 2) = 10,08/22,4 = 0,45 моль

по уравнению реакции n (C 2 H 2) : n(C 6 H 6) =3:1

n (C 6 H 6) = 0,45/3 = 0,15 моль

3. Рассчитана теоретическая масса бензола

m (C 6 H 6) = 0,15 моль * 78 г/моль = 11,7 г

4. Рассчитана практическая масса бензола

m (C 6 H 6) пр = 0,7 * 11,7 = 8,19 г

Вариант 2

Часть А


Часть В


Часть С

С 1 1. Газообразный аммиак, выделившийся при кипячении 160г 7-% -ного раствора гидроксида калия с 9,0г. Хлорида аммония, растворили в 75г воды. Определите массовую долю аммиака в полученном растворе.

Содержание верного ответа и указания по оцениванию Элементы ответа:
    Составлено уравнение реакции:
КОН + NH 4 Cl = KCl + NH 3 + H 2 O
    Рассчитаны масса и количество вещества щёлочи в растворе, а также количество вещества хлорида аммония:
m (KOH) = 160 . 0,07 = 11,2 г n (KOH) = 11,2 / 56 = 0,2 моль n (NH 4 Cl) = 9/53,5 = 0,168 моль
    Указано вещество, которое в растворе находится в избытке:
КОН – гидроксид калия (или вещество, которое реагирует полностью – NH 4 Cl).
    Определена масса аммиака и его массовая доля в растворе
n (NH 3) = n (NH 4 Cl) = 0,168 моль m (NH 3) = 0,168 . 17 = 2,86 г w (NH 3) = 2,86/77,86 = 0,0367 или 3,67%

*Примечание. В случае, когда в ответе содержится ошибка в вычислениях в одном из элементов ответа, которая привела к неверному ответу, оценка за выполнение задания снижается только на 1 балл.

Информационные ресурсы.

    Артеменко А.И. Удивительный мир органической химии. – М.: Дрофа, 2004.

    Габриелян О.С., Остроумов И.Г. Настольная книга учителя. Химия. 10-й класс. – М.: Дрофа,2004.

    Корощенко А.С., Медведев Ю.Н. Химия ГИА типовые тестовые задания – М.: «Экзамен», 2009.

    Кузнецова Н.Е., Левкина А.Н, Задачник по химии 9-й класс. – М.: Издательский центр «Вентана – Граф», 2004.

    Кузнецова Н.Е., Титова И.М., Гара Н.Н., Жегин А.Ю. Химия. – 9-й класс. – М.: Издательский центр «Вентана – Граф», 2002.

    Потапов В.М. Органическая химия. – М.: Просвещение, 1976.

    Энциклопедический словарь юного химика. – М.: Педагогика – Пресс, 1997.

    Пичугина Г.В. Химия и повседневная жизнь человека. – М.: Дрофа, 2005.

    http://www.fipi.ru/

CH 3 -CH 3 + Cl 2 – (hv) ---- CH 3 -CH 2 Cl + HCl

C 6 H 5 CH 3 + Cl 2 --- 500 C --- C 6 H 5 CH 2 Cl + HCl

    Реакции присоединеия

Такие реакции характерны для органических соединений, содержащих кратные(двойные или тройные) связи. К реакциям этого типа относятся реакции присоединения галогенов, галогеноводородов и воды к алкенам и алкинам

CH 3 -CH=CH 2 + HCl ---- CH 3 -CH(Cl)-CH 3

    Реакции отщепления (элиминирования)

Это реакции, приводящие к образованию кратных связей. При отщеплении галогеноводородов и воды наблюдается определенная селективность реакции, описываемая правилом Зайцева, согласно которому атом водорода отщепляется от того атома углерода, при котором находится меньше атомов водорода. Пример реакции

CH3-CH(Cl)-CH 2 -CH 3 + KOH →CH 3 -CH=CH-CH 3 + HCl

    Полимеризации и поликонденсации

n(CH 2 =CHCl)  (-CH 2 -CHCl)n

    Окислительно-восстановительные

Наиболее интенсивная из окислительных реакций – это горение, реакция, характерная для всех классов органических соединений. При этом в зависимости от условий горения углерод окисляется до С (сажа), СО или СО 2 , а водород превращается в воду. Однако для химиков-органиков большой интерес представляют реакции окисления, проводимые в гораздо более мягких условиях, чем горение. Используемые окислители: растворы Br2 в воде или Cl2 в CCl 4 ; KMnO 4 в воде или разбавленной кислоте; оксид меди; свежеосажденные гидроксиды серебра (I) или меди(II).

3C 2 H 2 + 8KMnO 4 +4H 2 O→3HOOC-COOH + 8MnO 2 + 8KOH

    Этерификации (и обратной ей реакции гидролиза)

R 1 COOH + HOR 2 H+  R 1 COOR 2 + H 2 O

    Циклоприсоединение

Y R Y-R

+ ‖ → ǀ ǀ

R Y R-Y

+ →

11. Классификация органических реакций по механизму. Примеры.

Механизм реакции предполагает детальное постадийное описание химических реакций. При этом устанавливают, какие именно ковалентные связи разрываются, в каком порядке и каким путем. Столь же тщательно описывают образование новых связей в процессе реакции. Рассматривая механизм реакции, прежде всего обращают внимание на способ разрыва ковалентной связи в реагирующей молекуле. Таких способов два – гомолитический и гетеролитический.

Радикальные реакции протекают путем гомолитического (радикального) разрыва ковалентной связи:

Радикальному разрыву подвергаются неполярные или малополярные ковалентные связи (С–С, N–N, С–Н) при высокой температуре или под действием света. Углерод в радикале СН 3 имеет 7 внешних электронов (вместо устойчивой октетной оболочки в СН 4). Радикалы неустойчивы, они стремятся захватить недостающий электрон (до пары или до октета). Один из способов образования устойчивых продуктов – димеризация (соединение двух радикалов):

СН 3 + СН 3 СН 3 : СН 3 ,

Н + Н Н : Н.

Радикальные реакции – это, например, реакции хлорирования, бромирования и нитрования алканов:

Ионные реакции протекают с гетеролитическим разрывом связи. При этом промежуточно образуются короткоживущие органические ионы – карбкатионы и карбанионы – с зарядом на атоме углерода. В ионных реакциях связывающая электронная пара не разъединяется, а целиком переходит к одному из атомов, превращая его в анион:

К гетеролитическому разрыву склонны сильно полярные (Н–O, С–О) и легко поляризуемые (С–Вr, С–I) связи.

Различают нуклеофильные реакции (нуклеофил – ищущий ядро, место с недостатком электронов) и электрофильные реакции (электрофил – ищущий электроны). Утверждение, что та или иная реакция является нуклеофильной или электрофильной, условно всегда относится к реагенту. Реагент – участвующее в реакции вещество с более простой структурой. Субстрат – исходное вещество с более сложной структурой. Уходящая группа – это замещаемый ион, который был связан с углеродом. Продукт реакции – новое углеродсодержащее вещество (записывается в правой части уравнения реакции).

К нуклеофильным реагентам (нуклеофилам) относят отрицательно заряженные ионы, соединения с неподеленными парами электронов, соединения с двойными углерод-углеродными связями. К электрофильным реагентам (электрофилам) относят положительно заряженные ионы, соединения с незаполненными электронными оболочками (АlCl 3 , ВF 3 , FeCl 3), cоединения с карбонильными группами, галогены. Электрофилы – любые атом, молекула или ион, способные присоединить пару электронов в процессе образования новой связи. Движущая сила ионных реакций – взаимодействие противоположно заряженных ионов или фрагментов разных молекул с частичным зарядом (+ и –).

Примеры ионных реакций разных типов.

Нуклеофильное замещение :

Электрофильное замещение :

Нуклеофильное присоединение (сначала присоединяется CN – , потом Н +):

Электрофильное присоединение (сначала присоединяется Н + , потом Х –):

Элиминирование при действии нуклеофилов (оснований) :

Элиминирование при действии электрофилов (кислот) :

В ходе реакции в молекулах реагирующих веществ разрываются одни химические связи и образуются другие. Органические реакции классифицируются по типу разрыва химических связей в реагирующих частицах. Из их числа можно выделить две большие группы реакций - радикальные и ионные.

Радикальные реакции - это процессы, идущие с гомолитическим разрывом ковалентной связи. При гомолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. В результате гомолитического разрыва образуются свободные радикалы:

Нейтральный атом или частица с неспаренным электроном называется свободным радикалом.

Ионные реакции - это процессы, идущие с гетеролитическим разрывом ковалентных связей, когда оба электрона связи остаются с одной из ранее связанных частиц:

В результате гетеролитического разрыва связи получаются заряженные частицы: нуклеофильная и электрофильная.

Нуклеофильная частица (нуклеофил) - это частица, имеющая пару электронов на внешнем электронном уровне. За счет пары электронов нуклеофил способен образовывать новую ковалентную связь.

Электрофильная частица (электрофил) - это частица, имеющая незаполненный внешний электронный уровень. Электрофил представляет незаполненные, вакантные орбитали для образования ковалентной связи за счет электронов той частицы, с которой он взаимодействует.

В органической химии все структурные изменения рассматриваются относительно атома (или атомов) углерода, участвующего в реакции.

В соответствии с вышеизложенным хлорирование метана под действием света классифицируют как радикальное замещение, присоединение галогенов к алкенам - как электрофильное присоединение, а гидролиз алкилгалогенидов - как нуклеофильное замещение.

Наиболее часто встречаются следующие типы оеакций.

Основные типы химических реакций

I. Реакции замещения (замена одного или нескольких атомов водорода на атомы галогенов или спецгруппу) RCH 2 X + Y → RCH 2 Y + X

II. Реакции присоединения RCH=CH 2 + XY → RCHX−CH 2 Y

III. Реакции отщепления (элиминирования) RCHX−CH 2 Y → RCH=CH 2 + XY

IV. Реакции изомеризации (перегруппировки)

V. Реакции окисления (взаимодействие с кислородом воздуха или окислителя)

В этих вышеперечисленных типах реакции различают ещё и специализированные и именные реакции.

Специализированные:

1) гидрирование (взаимодействие с водородом)

2) дегидрирование (отщепление от молекулы водорода)

3) галогенирование (взаимодействие с галогеном: F 2 , Cl 2 , Br 2 , I 2)

4) дегалогенирование (отщепление от молекулы галогена)

5) гидрогалогенирование (взаимодействие с галогенводородом)

6) дегидрогалогенирование (отщепление от молекулы галогенводорода)

7) гидратация (взаимодействие с водой в необратимой реакции)

8) дегидратация (отщепление от молекулы воды)

9) гидролиз (взаимодействие с водой в обратимой реакции)

10) полимеризация (получение многократного увеличенного углеродного скелета из одинаковых простых соединений)

11) поликонденсация (получение многократного увеличенного углеродного скелета из двух разных соединений)

12) сульфирование (взаимодействие с серной кислотой)

13) нитрование (взаимодействие с азотной кислотой)

14) крекинг (уменьшение углеродного скелета)

15) пиролиз (разложение сложных органических веществ на более простые под действием высоких температур)

16) реакция алкилирования (введение в формулу радикала алкана)

17) реакция ацилирования (введение в формулу группы –C(CH 3)O)

18) реакция ароматизации (образование углеводорода ряда аренов)

19) реакция декарбоксилирования (отщепление от молекулы карбоксильной группы -COOH)

20) реакция этерификации (взаимодействие спирта с кислотой, или получение сложного эфира из спирта или карбоновой кислоты)

21) реакция «серебряного зеркала» (взаимодействие с аммиачным раствором оксида серебра (I))

Именные реакции:

1) реакция Вюрца (удлинение углеродного скелета при взаимодействии галогенпроизводного углеводорода с активным металлом)

2) реакция Кучерова (получение альдегида при взаимодействии ацетилена с водой)

3) реакция Коновалова (взаимодействие алкана с разбавленной азотной кислотой)

4) реакция Вагнера (окисление углеводородов с двойной связью кислородом окислителя в слабощелочной или нейтральной среде при нормальных условиях)

5) реакция Лебедева (дегидрирование и дегидратация спиртов при получении алкадиенов)

6) реакция Фриделя-Крафтса (реакция алкилирования арена хлоралканом при получении гомологов бензола)

7) реакция Зелинского (получение бензола из циклогексана дегидрированием)

8) реакция Кирхгофа (превращение крахмала в глюкозу при каталитическом действии серной кислоты)