Шинство металлов имеют кубическую объемно центрированную (Li, Na, К, Rb, Cs) и кубическую гранецентрированную (Си, Ag, Pt, Аи) решетки. Чаше всего металлы встречаются в виде поликристаллов

Большинство твердых веществ имеют кристаллическую структуру , в которой частицы, из которых она «построена» находятся в определенном порядке, создавая тем самым кристаллическую решетку . Она строится из повторяющихся одинаковых структурных единиц - элементарных ячеек , которая связывается с соседними ячейками, образуя дополнительные узлы. В результате существует 14 различных кристаллических решеток.

Типы кристаллических решеток.

В зависимости от частиц, которые стоят в узлах решетки, различают:

  • металлическую кристаллическую решетку;
  • ионную кристаллическую решетку;
  • молекулярную кристаллическую решетку;
  • макромолекулярную (атомную) кристаллическую решетку.

Металлическая связь в кристаллических решетках.

Ионные кристаллы обладают повышенной хрупкостью, т.к. сдвиг в решетке кристалла (даже незначительный) приводит к тому, что одноименно заряженные ионы начинают отталкиваться друг от друга, и связи рвутся, образуются трещины и расколы.

Молекулярная связь кристаллических решеток.

Основная особенность межмолекулярной связи заключается в ее «слабости» (ван-дер-ваальсовые, водородные).

Это структура льда. Каждая молекула воды связана водородными связями с 4-мя окружающими ее молекулами, в результате структура имеет тетраэдрический характер.

Водородная связь объясняет высокую температуру кипения, плавления и малую плотность;

Макромолекулярная связь кристаллических решеток.

В узлах кристаллической решетки находятся атомы. Эти кристаллы разделяются на 3 вида:

  • каркасные;
  • цепочечные;
  • слоистые структуры.

Каркасной структурой обладает алмаз - одно их самых твердых веществ в природе. Атом углерода образует 4 одинаковые ковалентные связи, что говорит о форме правильного тетраэдра (sp 3 - гибридизация). Каждый атом имеет неподеленную пару электронов, которые также могут связываться с соседними атомами. В результате чего образуется трехмерная решетка, в узлах которой только атомы углерода.

Энергии для разрушения такой структуры требуется очень много, температура плавления таких соединений высока (у алмаза она составляет 3500°С).

Слоистые структуры говорят о наличии ковалентных связях внутри каждого слоя и слабых ван-дер-ваальсовых - между слоями.

Рассмотрим пример: графит. Каждый атом углерода находится в sp 2 - гибридизации. 4-ый неспаренный электрон образует ван-дер-ваальсовую связь между слоями. Поэтому 4ый слой очень подвижен:

Связи слабые, поэтому их легко разорвать, что можно наблюдать у карандаша - «пишущее свойство» - 4ый слой остается на бумаге.

Графит - отличный проводник электрического тока (электроны способны перемещаться вдоль плоскости слоя).

Цепочечными структурами обладают оксиды (например, SO 3 ), который кристаллизуется в виде блестящих иголок, полимеры, некоторые аморфные вещества, силикаты (асбест).

Гранецентрированная кубическая ячейка, относящаяся к кубической сингонии; Смотри также: Ячейка электролитическая ячейка гранецентрированная ячейка …

Ячейка - : Смотри также: электролитическая ячейка гранецентрированная ячейка базоцентрированная ячейка … Энциклопедический словарь по металлургии

ЯЧЕЙКА ГРАНЕЦЕНТРИРОВАННАЯ КУБИЧЕСКАЯ - один из 14 типов решеток Браве. Характеризуется расположением узлов по вершинам и в центрах всех граней куба. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

кубическая сингония - кристаллографическая сингония, для которой характерно соотношение между углами и рёбрами элементарной ячейки кристалла: а = b = с, α = β = γ = 90º. Подразделяется на 5 классов (точечных групп симметрии). * * * КУБИЧЕСКАЯ СИНГОНИЯ КУБИЧЕСКАЯ… … Энциклопедический словарь

кубическая решетка (К6) - кристаллическая решетка, элементарная ячейка которой относится к кубической сингонии; Смотри также: Решетка триклинная решетка тетрагональная решетка пространственная решетка … Энциклопедический словарь по металлургии

Кубическая сингония

Кубическая гранецентрированная решётка - В кристаллографии кубическая сингония одна из семи сингоний. Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины, перпендикулярными друг другу. В кубической сингонии существует три вида решёток Бравэ:… … Википедия

Кубическая решетка - В кристаллографии кубическая сингония одна из семи сингоний. Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины, перпендикулярными друг другу. В кубической сингонии существует три вида решёток Бравэ:… … Википедия

Кубическая решётка - В кристаллографии кубическая сингония одна из семи сингоний. Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины, перпендикулярными друг другу. В кубической сингонии существует три вида решёток Бравэ:… … Википедия

электролитическая ячейка - сосуд с электролитом, снабженный электродами, в котором реализуются электрохимическии реакции; основной конструкционный элемент промышленных электролизеров. Конструкции электролитической ячейки чрезвычайно разнообразны. В… … Энциклопедический словарь по металлургии

гранецентрированная ячейка - элементарная ячейка кристалла в виде параллелепипеда, в центре каждой грани которого располается дополнительный атом, однотипный атомам в его вершинах; Смотри также: Ячейка электролитическая ячейка … Энциклопедический словарь по металлургии

Плотность упаковки – это доля объема кристаллической решетки, занятая атомами.

Кратчайшее расстояние между центрами двух шаров в элементарной ячейке равно двум радиусам шара – 2r. Объем шара V = 4/3r 3 , объем шаров, входящих в элементарную ячейку, V n = 4/3nr 3 , где n – кратность элементарной ячейки. Если объем элементарной ячейки V 0 , то плотность упаковки равна Р = (V n /V 0)·100 %.

Если период решетки равен а, то V 0 = а 3 , решение задачи сводится к выражению атомного радиуса через период решетки, для конкретной структуры следует определить кратчайшее межатомное расстояние, например, в алмазе 2r = a /4 (кратчайшее расстояние, равное двум атомным радиусам, составляет четверть пространственной диагонали куба).

В табл. 2.3 приведены результаты расчета плотности упаковки для различных структур.

Таблица 2.3

Плотность упаковки для различных структур

Тип решетки

К. ч.

Атомный радиус r

Кратность ячейки n

Кубическая примитивная

С повышением координационного числа плотность упаковки растет.

Заполнение междоузлий в ГЦК решетке, что соответствует повышению кратности элементарной ячейки, приводит к менее плотным упаковкам.

2.8. Связь между типом структуры, координационным числом и электрофизическими свойствами

Плотнейшие и плотные упаковки (Р = 68 – 74 %) с к.ч. 8/8 и 12/12 типичны для металлов (структуры ОЦК, ГЦК, ГПУ) .

Наименее плотные упаковки (Р = 34 % и подобными) с к.ч. 4/4 (структуры алмаза, сфалерита, вюрцита), 4/2 (куприт), 2/2 (селен) типичны для полупроводников.

Структуры с промежуточными значениями к.ч. 6/6 и плотности Р 67 %, например, типаNaCl, могут иметь и проводниковые свойства (TiO, TiN, VN, TiC и др.), и полупроводниковые свойства (PbS, PbSe, PbTe), и диэлектрические (NaCl, MgO, CaO, BaO).

Металлические вещества могут кристаллизоваться и в структуры с низкими к.ч., например, в графите к.ч. равно 4, как и в алмазе.

Важнейшие полупроводники образуют следующие структуры:

алмаза: Si,Ge, α-Sn;

сфалерита: ZnS, HgS, CdTe, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, SiC, ZnSe, HgSe, ZnTe, HgTe;

куприта: Cu 2 O, Ag 2 O;

флюорита: Mg 2 Si, Mg 2 Ge;

вюрцита: ZnS, ZnO, CdS, CdSe;

хлорида натрия: PbS, PbSe, PbTe;

арсенида никеля: VS, VSe, FeS, FeSe.

2.9. Островные, цепные и слоистые структуры

Кроме координационных структур, в которых межатомные расстояния между всеми структурными единицами одинаковы (один тип связи), в островных, цепных и слоистых структурах (рис.2.15) могут быть выделены группы атомов, которые образуют «острова» (молекулы), непрерывно простирающиеся в одном направлении (цепи), или бесконечные в двух (слои) или трех (каркасы) измерениях. Такие структуры являются молекулярными.

На рис. 2.15 а изображены островные структуры: 1 - линейные, 2 – двумерные (квадрат), 3 – трехмерные (тетраэдр). На рис. 2.15 b показаны цепные структуры: 4 – линейная, 5 – цигзагообразная, 6 и 7 – звенья из октаэдров и тетраэдров.

Рис.2.15. Островные и цепные структуры

Контрольные вопросы

    Какая решетка называется простой, сложной?

    Чем поликристалл отличается от монокристалла?

    Что обозначает запись: (hkl), {hkl}, < hkl>, ?

    Какие значения могут принимать индексы Миллера?

    Запишите индексы Миллера плоскостей, перпендикулярных ребрам куба.

    Запишите индексы Миллера плоскостей, перпендикулярных диагоналям граней куба.

    Запишите индексы Миллера плоскостей, параллельным граням куба.

    Запишите индексы Миллера направлений, перпендикулярных граням куба.

    В чем отличие (110), {110 }, < 110>, ?

    Какое явление называется полиморфизмом?

    Что такое изоморфизм?

    Чем отличается строение стекол от строения кристаллов?

    Каковы особенности строения аморфных тел?

    Какие структуры относятся к плотным упаковкам? Как расположены в них атомы?

    В чем отличие ГПУ от ГЦК?

    Чему равны координационные числа в плотных упаковках?

    Где расположены тетраэдрические междоузлия в ГЦК решетке?

    Где расположены октаэдрические междоузлия в ГЦК решетке?

    Что называется политипизмом?

    Что называется кратностью элементарной ячейки?

    Чем отличаются различные типы кубических структур?

    Изобразите элементарные ячейки меди, кремния, NaCl, CsCl, сфалерита.

    Поясните расположение атомов в решетке вюрцита.

    На основе какой плотной упаковки строится решетка вюрцита?

    На основе какой плотной упаковки строится решетка сфалерита?

    Сколько атомов приходится на элементарную ячейку вюрцита?

    Как рассчитывается плотность упаковки кристаллических структур?

    Какие кристаллические решетки имеют максимальную плотность упаковки?

    Какие кристаллические решетки имеют минимальную плотность упаковки?

    Как связана плотность упаковки с координационным числом?

    Можно ли отнести цепные структуры к координационным? Почему?

    В чем разница между дальним и ближним порядком в твердых телах?

Изучение металлов в соответствии с периодической системой элементов Менделеева показывает, что за исключением Mn и Hg элементы подгруппы А, в том числе переходные металлы и большинство редкоземельных элементов, а также металлы подгрупп IB и IIB и некоторые элементы группы IIIB, в том числе Al образуют одну из следующих типичных металлических структур:

А 1 - кубическая гранецентрированная решетка (ГЦК)

Кубической гранецентрированной решеткой обладают следующие металлы: g - Fe, Al, Cu, Ni, a - Co, Pb, Ag, Au, Pt и др.

В кубической гранецентрированной решетке атомы располагаются по вершинам элементарной ячейки и в центрах ее граней (рис.1.5).

Каждый атом в этой решетке окружен 12-ю ближайшими соседями, располагающихся на одинаковых расстояниях, равных = 0,707×а , где а - ребро элементарной ячейки. Число ближайших соседей, равное 12-ти называется координационным числом кристаллической решетки. Кроме этих ближайших атомов, в кристаллической решетке имеется 6 атомов, удаленных на значительно большие расстояния, равные а .

Рассматриваемая кристаллическая решетка имеет два вида пустот, (междоузлий, в которых могут располагаться более мелкие атомы других элементов в сплавах) образующих твердые растворы внедрения.

Наибольшие междоузлия или пустоты находятся в центре куба и посередине его ребер. Каждая из этих пустот окружена шестью атомами ГЦК решетки, занимающими места в вершинах правильного октаэдра. В связи с этим, они называются октаэдрическими пустотами (рисунок 1.5, б ). Такие положения различных элементов в гранецентрированной кубической решетке занимают атомы Na и Cl в решетке NaCl. Такие же положения занимает углерод в решетке g - Fe.

Кроме этих пустот в ГЦК решетке имеются более мелкие пустоты, называемые тетраэдрическими, в связи с тем, что их окружают 4 атома. Всего в ГЦК решетке 8 тетраэдрических пустот (рисунок 1.5, в ).

Размеры тетраэдрических и октаэдрических пустот можно ощутить, если предположить, что решетка построена из жестких шаров, радиусом r, соприкасающихся друг с другом; в этом случае в имеющиеся промежутки можно было бы поместить сферы, радиусом 0,41 r и 0,225 r соответственно для октаэдрической и тетраэдрической пустот.

Наиболее плотноупакованными плоскостями в структуре гранецентрированного куба являются плоскости изображенные на рисунке. Их условное обозначение {111} (рисунок 1.5., г ).


Объемно-центрированную кубическую решетку А 2 (ОЦК) имеют металлы a - Fe, хром, вольфрам, молибден, ванадий, натрий, литий и другие. Структура А 2 является менее плотноупакованной.

Атомы в решетке ОЦК располагаются в вершинах и в центре элементарной ячейки (рисунок 1.6).

Каждый атом в этой ячейке имеет 8 ближайших соседей, располагающихся на расстоянии где, а - длина ребра куба. Следовательно, координационное число решетки равно 8. Иногда его обозначают (8 + 6), т.к. следующие по удаленности атомы расположено на расстоянии а, число их равно 6.

В структуре ОЦК также имеются 2 типа пустот. Крупные занимают положения на гранях куба (рисунок 1.6, в ). Они окружены 4 атомами, располагающимися в вершинах тетраэдра, ребра которых попарно равны. Более мелкие пустоты, окруженные 6 атомами, занимающими места в вершинах неправильного октаэдра, располагаются посередине ребер и граней ячейки (рисунок 1.6, г ). Если структуру ОЦК решетки построить из жестких шаров, то в тетраэдрические пустоты можно поместить сферы радиусом 0,292 r, а в октаэдрические - 0,154 r.

Таким образом, максимальный размер сферы, которую можно поместить в пустоты более плотно упакованной решетки ГЦК оказывается большим, чем в решетку ОЦК.

Внедрение других атомов в октаэдрическую пору ОЦК решетки вызывает смещение двух атомов в направлении параллельными ребру куба, что вызывает расширение решетки в этом направлении. В структуре мартенсита, где атомы углерода внедряются в октаэдрические пустоты, расположенные только на ребрах, параллельных оси С и в центрах граней, перпендикулярных этой оси, это приводит к тетрагональному искажению решетки a - Fe.

Наиболее плотноупакованными плоскостями ОЦК являются 12 плоскостей семейства {110} (рисунок 1.6.б ). В этих плоскостях имеются 2 направления, в которых жесткие шары могут соприкасаться.

Гексагональной плотноупакованной решеткой А 3 (ГПУ) обладают такие металлы, как Zn, b - Co, Cd, Mg, a - Ti, a - Zr.

Гексагональная решета построена из отдельных слоев, причем таким образом, что каждый атом любого слоя окружен 6 расположенными на равных расстояиях соседями, принадлежащими этому же слою, и, кроме того, имеет по три ближайших соседа в слоях, расположенных выше и ниже данного слоя (рисунок 1.7).

Расстояние между атомами в гексагональных слоях обозначается через а , высота ячейки через с. Шесть ближайших соседей, расположенных в смежных слоях будут также находиться на расстоянии, а от данного атома, если отношение осей с/а составит, то такая структура называется идеальной плотноупакованной. Причем координационное число в этом случае, также как и в ГЦК решетке, равно 12.

Большинство металлов с гексагональной плотноупакованной решеткой имеет отношение осей с/а = 1,56 - 1,63. Исключения составляют Zn и Cd (1,86; 1,89). Это связано с тем, что электронные облака атомов Zn и Cd не обладают сферической симметрией и вытянуты вдоль оси С. В гексагональной плотноупакованной решетке, также как и в ГЦК, имеется 2 вида пустот: октаэдрические и тетраэдрические (рисунок 1.7, б ).

Диаметры жестких сфер, которые могут быть помещены в эти пустоты также как и для ГЦК равны 0,41 r и 0,225 r.

Достаточно взглянуть на построение плотноупакованных плоскостей ГЦК решетки {111} (рисунок 1.8, а ), чтобы найти полную аналогию в построении атомов в этих двух решетках. Разница этих решеток состоит в чередовании слоев. Если в гексагональной решетке происходит чередование слоев АВАВ и т.д., то в ГЦК решетке: АВСАВС (рисунок 1.8, б ), т.е. при этом используется третье возможное положение плотноупакованного слоя.

Разница в энергетическом отношении между этими двумя решетками незначительна и, в связи с этим, последовательность чередования слоев может легко нарушиться при пластической деформации, а также в результате возникновения дефектов кристалла во время его роста, так называемых дефектов упаковки.

Таким образом, кажущаяся разница в построении ГПУ и ГЦК решетки совсем не велика (рисунок 1.8).

Углерод в виде алмаза, кремний, германий, a - олово (серое) имеют двойную кубическую решетку типа алмаза (рисунок 1.9). Она отличается от ГЦК решетки наличием в четырех из восьми тетраэдрических пустот дополнительно четырех атомов. В результате, структура оказывается более рыхлой.

Каждый атом алмаза окружен лишь четырьмя ближайшими соседями, располагающимися в углах правильного тетраэдра. Координационное число такой структуры равно 4.

Как было показано выше, одни и те же металлы при разных температурах могут иметь разное кристаллическое строение, что вызвано их аллотропией.

Аллотропическим (полиморфным) превращением называют изменение пространственной решетки кристаллического тела.

В качестве примеров аллотропических превращений можно привести превращение низкотемпературной аллотропической формы a - Fe с объемно-центрированной кубической решеткой в высокотемпературную форму g - Fe с гранецентрированной кубической решеткой, при температуре 910 °С и последующее превращение при температуре 1392 °С g - Fe в d - Fe с объемно-центрированной кубической решеткой, аналогичной a - Fe. Аналогичные превращения можно наблюдать в титане, цирконии и т.д. В титане и цирконии низкотемпературной аллотропической формой являются a - Ti, a - Zr с гексагональной плотноупакованной решеткой. При температуре выше 882 °С для титана и 862 °С для циркония образуются b - Ti и b - Zr, обладающие объемно-центрированной решеткой.

Как вы видели, аллотропическое превращение заключается в том, что атомное строение кристаллического тела изменяется при нагреве и охлаждении. Сам процесс перестройки кристаллической решетки происходит изотермически при постоянной температуре, кривая охлаждения сплава претерпевающего аллотропические превращения, аналогична кривой, наблюдаемой при затвердевании жидкого металла. Температура перехода называется критической точкой превращения. При температуре (Т 0) наблюдается фазовое равновесие двух аллотропических разновидностей.

Аналогично процессу кристаллизации аллотропическое превращение идет с поглощением тепла при нагреве и выделением его при охлаждении. Аллотропическое превращение (также по аналогии с процессом кристаллизации) происходит путем образования зародышей и их последующего роста, в связи с чем оно протекает всегда с наличием переохлаждения (при охлаждении) и перенагрева при нагреве.

Аллотропическое превращение происходит, так же как и процесс кристаллизации, в связи со стремлением системы к уменьшению свободной энергии.