Все о органической химии. Органическая химия

Из всего многообразия химических соединений большая часть (свыше четырех миллионов) содержит углерод. Почти все они относятся к органическим веществам. Органические соединения встречаются в природе, например углеводы, белки, витамины, они играют важную роль в жизнедеятельности животных и растений. Многие органическиё вещества и их смеси (пластмассы, каучук, нефть, природный газ и другие) имеют большое значение для развития народного хозяйства страны.

Химия соединений углерода называется органической химией. Так определил предмет органической химии великий русский химик-органик А.М. Бутлеров. Однако не все соединения углерода принято относить к органическим. Такие простейшие вещества, как оксид углерода (II) СО, диоксид углерода СО2, угольная кислота Н2СО3 и ее соли, например, СаСО3, К2СО3, относят к неорганическим соединениям. В состав органических веществ кроме углерода могут входить и другие элементы. Наиболее часто - это водород, галогены, кислород, азот, сера и фосфор. Существуют также органическиё, вещества, содержащие другие элементы, в том числе металлы.

2. Строение атома углерода (С), структура его электронной оболочки

2.1 Значение атома углерода (С) в химическом строении органических соединений

УГЛЕРОД (лат. Carboneum), С, химический элемент подгруппы IVa периодической системы; атомный номер 6, атомная масса 12,0107, относится к неметаллам. Природный углерод состоит из двух стабильных нук лидов - 12С (98,892% по массе) и 13С (1,108%) и одного нестабильного - С с периодом полураспада 5730 лет.

Распространённость в природе. На долю углерода приходится 0,48% от массы земной коры, в которой он по содержанию занимает среди других элементов 17-е место. Основные углерод-содержащие породы - природные карбонаты (известняки и доломиты); количество углерода в них составляет около 9,610 т.

В свободном состоянии углерод встречается в природе в виде горючих ископаемых, а также в виде минералов - алмаза и графита. Около 1013 т углерода сосредоточено в таких горючих ископаемых, как каменный и бурый уголь, торф, сланцы, битумы, образующих мощные скопления в недрах Земли, а также в природных горючих газах. Алмазы чрезвычайно редки. Даже алмазоносные породы (кимберлиты) содержат не более 9-10 % алмазов массой, как правило, не более 0,4 г. Найденным крупным алмазам обычно присваивают особое название. Самый большой алмаз «Куллинан» весом 621,2 г (3106 карат) был найден в Южной Африке (Трансвааль) в 1905 г., а самый большой русский алмаз «Орлов» весом 37,92 г (190 карат) -в Сибири в середине 17 в.

Чёрно-серый непрозрачный жирный на ощупь с металлическим блеском графит представляет собой скопление плоских полимерных молекул из атомов углерода, непрочно наслоённых друг на друга. При этом атомы внутри слоя связаны между собой сильнее, чем атомы между слоями.

Другое дело алмаз. В его бесцветном, прозрачном и сильно преломляющем свет кристалле каждый атом углерода связан химическими связями с четырьмя такими же атомами, расположенными в вершинах тетраэдра. Все связи одинаковы по длине и очень прочны. Они образуют в пространстве непрерывный трёхмерный каркас. Весь кристалл алмаза представляет собой как бы одну гигантскую полимерную молекулу, не имеющую «слабых» мест, т.к. прочность всех связей одинакова.

Плотность алмаза при 20°С равна 3,51 г/см 3 , графита - 2,26 г/см 3 . Физические свойства алмаза (твёрдость, электропроводность, коэффициент термического расширения) практически одинаковы по всем направлениям; он является самым твёрдым из всех найденных в природе веществ. В графите же эти свойства по разным направлениям - перпендикулярному или параллельному слоям атомов углерода - сильно различаются: при небольших боковых усилиях параллельные слои графита сдвигаются друг относительно друга и он расслаивается на отдельные чешуйки, оставляющие след на бумаге. По электрическим свойствам алмаз - диэлектрик, графит же проводит электрический ток.

Алмаз при нагревании без доступа воздуха выше 1000 °С превращается в графит. Графит при постоянном нагревании в тех же условиях не изменяется вплоть до 3000°С, когда он возгоняется без плавления. Прямой переход графита в алмаз происходит только при температуре выше 3000°С и огромном давлении - около 12 ГПа.

Третья аллотропная модификация углерода -карбин - получена искусственно. Это мелкокристаллический чёрный порошок; в его структуре длинные цепочки атомов углерода расположены параллельно друг другу. Каждая цепочка имеет строение (-С=С) Л или (=С=С=) Л. Плотность карбина средняя между графитом и алмазом -2,68-3,30 г/см 3 . Одна из важнейших особенностей карбина - его совместимость с тканями человеческого организма, что позволяет применять его, например, при изготовлении не-отторгаемых организмом искусственных кровеносных сосудов (рис. 1).

Название своё фуллерены получили не в честь химика, а по имени американского архитектора Р. Фуллера, который предложил строить ангары и другие сооружения в виде куполов, поверхность которых образуют пяти- и шестиугольники (такой купол построен, например, московском парке «Сокольники»).

Для углерода характерно также состояние с неупорядоченной структурой - это т. наз. аморфный углерод (сажа, кокс, древесный уголь) рис. 2. Получение углерода (С):

Большинство окружающих нас веществ - органические соединения. Это ткани животных и растений, наша пища, лекарства, одежда (хлопчатобумажные, шерстяные и синтетические волокна), топливо (нефть и природный газ), резина и пластмассы, моющие средства. В настоящее время известно более 10 миллионов таких веществ, и число их каждый год значительно возрастает благодаря тому, что учёные выделяют неизвестные вещества из природных объектов и создают новые, не существующие в природе соединения.

Такое многообразие органических соединений связано с уникальной особенностью атомов углерода образовывать прочные ковалентные связи, как между собой, так и с другими атомами. Атомы углерода, соединяясь друг с другом как простыми, так и кратными связями, могут образовывать цепочки практически любой длины и циклы. Большое разнообразие органических соединений связано также с существованием явления изомерии.

Почти все органические соединения содержат также водород, часто в их состав входят атомы кислорода, азота, реже - серы, фосфора, галогенов. Соединения, содержащие атомы любых элементов (за исключением О, N, S и галогенов), непосредственно связанные с углеродом, объединены под названием элементоорганические соединения; основную группу таких соединений составляют металлоорганические соединения (рис. 3).



Огромное число органических соединений требует их четкой классификации. Основу органического соединения составляет скелет молекулы. Скелет может иметь открытую (незамкнутую) структуру, тогда соединение называют ациклическим (алифатическим; алифатические соединения называют также соединениями жирного ряда, т.к. они впервые были выделены из жиров), и замкнутую структуру, тогда его называют циклическим. Скелет может быть углеродным (состоять только из атомов углерода) либо содержать другие, отличные от углерода атомы - т. наз. гетероатомы, чаще всего кислород, азот и серу. Циклические соединения подразделяют на карбоцикличе-ские (углеродные), которые могут быть ароматическими и алициклическими (содержащими один или несколько циклов), и гетероциклические.

Атомы водорода и галогенов в скелет не входят, а гетероатомы входят в скелет лишь в том случае, если они имеют, по меньшей мере, две связи с углеродом. Так, в этиловом спирте СН3СН2ОН атом кислорода не включён в скелет молекулы, а в диметиловом эфире СН3ОСН3 включён в него.

Кроме того, ациклический скелет может быть неразветвлённым (все атомы расположены в один ряд) и разветвлённым. Иногда неразветвлённый скелет называют линейным, однако следует помнить, что структурные формулы, которыми мы чаще всего пользуемся, передают лишь порядок связи, а не реальное расположение атомов. Так, «линейная» углеродная цепь имеет зигзагообразную форму и может закручиваться в пространстве различными способами.

В скелете молекулы различают четыре типа атомов углерода. Принято атом углерода называть первичным, если он образует только одну связь с другим атомом углерода. Вторичный атом связан с двумя другими атомами углерода, третичный - с тремя, а четвертичный все свои четыре связи затрачивает на образование связей с атомами углерода.

Следующим классификационным признаком является наличие кратных связей. Органические соединения, содержащие только простые связи, называются насыщенными (предельными). Соединения, содержащие двойные или тройные связи, называются ненасыщенными (непредельными). В их молекулах на один атом углерода приходится меньшее число атомов водорода, чем в предельных. Циклические ненасыщенные углеводороды ряда бензола выделяют в отдельный класс ароматических соединений.

Третьим классификационным признаком является наличие функциональных групп-групп атомов, характерных для данного класса соединений и определяющих его химические свойства. По количеству функциональных групп органические соединения делятся на монофункциональные - содержат одну функциональную группу, полифункциональные - содержат несколько функциональных групп, например глицерин, и гетерофунк-циональные - в одной молекуле несколько различных групп, например аминокислоты.

В зависимости от того, у какого атома углерода находится функциональная группа, соединения делятся на первичные, например этилхлорид СН 3 СН 2 С1, вторичные - изопропилхлорид (СНз)2СНС1 и третичные - бутилхлорид (СН 8) 8 ССl.

Органическая химия - это наука об углеродсодержащих соединениях и путях их синтеза. Поскольку многообразие органических веществ и их превращений необычайно велико, изучение этого крупного раздела науки требует особого подхода.

Если у тебя возникает неуверенность в возможности успешного освоения предмета, не переживай! 🙂 Ниже следуют некоторые советы, которые помогут тебе рассеять эти страхи и добиться успеха!

  • Обобщающие схемы

Все химические превращения, которые тебе встречаются при изучении того или иного класса органических соединений заноси в сводные схемы. Ты их можешь начертить по своему вкусу. Эти схемы, в которых собраны основные реакции, будут служить тебе путеводителями, позволяющими легко найти способы превращения одних веществ в другие. Схемы можно повесить около твоего рабочего места, чтобы чаще бросались в глаза, так проще их запомнить. Можно составить одну большую схему, содержащую все классы органических соединений. Например, такие: или вот такую схему:

Стрелки нужно пронумеровать и ниже (под схемой) привести примеры реакций и условия. Можно несколько реакций, место заранее много оставляйте. Объем большой получится, но это очень вам поможет в решении заданий 32 ЕГэ по химии «Реакции, подтверждающие взаимосвязь органических соединений» (бывшее С3).

  • Карточки для повторения

При изучении органической химии необходимо выучить большое число химических реакций, придется запомнить и понять, как протекает множество превращений. Помочь Вам в этом могут специальные карточки.

Заведите пачку карточек размером примерно 8 X 12 см. На одной стороне карточки записывайте реагенты, а на другой - продукты реакции:

Эти карточки можно носить с собой и просматривать их по нескольку раз в день. Полезнее обращаться к карточкам несколько раз по 5 -10 мин, чем один раз, но за длительный промежуток времени.

Когда наберется много таких карточек, следует разделить их на две группы:

группа №1 — те, которые хорошо знаешь, их просматриваешь раз в 1-2 недели, и

группа №2 — те, которые вызывают затруднения, их просматриваешь каждый день, пока они не «перекачуют» к группу №1.

Этот метод можно также использовать и для изучения иностранного языка, на одной стороне карточке пишешь слово, на обороте его перевод, так можно быстро пополнить словарный запас. На некоторых языковых курсах такие карточки выдаются уже в готовом виде. Так что, это проверенный метод!

  • Сводная таблица

Эту таблицу нужно переписать или распечатать (после авторизации на сайте доступно копирование) , если реакция не характерна для данного класса соединения – то ставите минус, а если характерна, то плюсик и номер по порядку, а ниже таблицы пишите примеры, соответствующие нумерации. Это тоже очень хороший способ систематизировать знания по органике!

  • Постоянное повторение

Органическая химия, как и иностранный язык, - кумулятивная дисциплина. Последующий материал базируется на знании ранее пройденного. Поэтому возвращайтесь периодически к пройденным темам.

  • Модели молекул

Поскольку форма и геометрия молекул имеют большое значение в органической химии, обучающемуся неплохо иметь набор моделей молекул. Такие модели, которые можно подержать в руках, окажут помощь в изучении стереохимических особенностей молекул.

Помните, что внимание к новым словам и терминам так же важно в органической химии, как и в других дисциплинах. Имейте в виду, что чтение научной литературы всегда медленнее, чем чтение художест­венной. Не пытайтесь быстро все охватить. Чтобы хорошо разобраться в представленном материале, необходимо медленное, вдумчивое чтение. Можно читать дважды: первый раз для беглого ознакомления, второй — для более внимательного изучения.

Удачи! У вас все получится!

Если вы поступили в университет, но к этому времени так и не разобрались в этой нелегкой науке, мы готовы раскрыть вам несколько секретов и помочь изучить органическую химию с нуля (для "чайников"). Вам же остается только читать и внимать.

Основы органической химии

Органическая химия выделена в отдельный подвид благодаря тому, что объектом ее изучения является все, в составе чего есть углерод.

Органическая химия – раздел химии, который занимается изучением соединения углерода, структуру таких соединений, их свойства и методы соединения.

Как оказалось, углерод чаще всего образует соединения со следующими элементами - H, N, O, S, P. Кстати, эти элементы называются органогенами .

Органические соединения, количество которых сегодня достигает 20 млн, очень важны для полноценного существования всех живых организмов. Впрочем, никто и не сомневался, иначе человек просто закинул бы изучение этого непознанного в долгий ящик.

Цели, методы и теоретические представления органической химии представлены следующим:

  • Разделение ископаемого, животного или растительного сырья на отдельные вещества;
  • Очистка и синтез разных соединений;
  • Выявление структуры веществ;
  • Определение механики протекания химических реакций;
  • Нахождение зависимости между структурой и свойствами органических веществ.

Немного из истории органической химии

Вы можете не верить, но еще в далекой древности жители Рима и Египта понимали кое-что в химии.

Как мы знаем, они пользовались натуральными красителями. А нередко им приходилось использовать не готовый естественный краситель, а добывать его, вычленяя из цельного растения (например, содержащиеся в растениях ализарин и индиго).

Можем вспомнить и культуру употребления алкоголя. Секреты производства спиртных напитков известны в каждом народе. Причем многие древние народы знали рецепты приготовления «горячей воды» из крахмал- и сахарсодержащих продуктов.

Так продолжалось долгие, долгие годы, и только в 16-17 веках начались какие-то изменения, небольшие открытия.

В 18 веке некто Шееле научился выделять яблочную, винную, щавелевую, молочную, галловую и лимонную кислоту.

Тогда всем стало ясно, что продукты, которые удалось выделить из растительного или животного сырья, имели много общих черт. В то же время они сильно отличались от неорганических соединений. Поэтому служителям науки нужно было срочно выделить их в отдельный класс, так и появился термин «органическая химия».

Несмотря на то, что сама органическая химия как наука появилась лишь в 1828 году (именно тогда господину Вёлеру удалось выделить мочевину путем упаривания цианата аммония), в 1807 году Берцелиус ввел первый термин в номенклатуру в органической химии для чайников:

Раздел химии, который изучает вещества, полученные из организмов.

Следующий важный шаг в развитии органический химии – теория валентности, предложенная в 1857 году Кекуле и Купером, и теория химического строения господина Бутлерова от 1861 года. Уже тогда ученые стали обнаруживать, что углерод – четырехвалентен и способен образовывать цепи.

В общем, с эти самых пор наука регулярно испытывала потрясения и волнения благодаря новым теориям, открытиям цепочкам и соединениям, что позволяло так же активно развиваться органической химии.

Сама наука появилась благодаря тому, что научно-технический прогресс не в состоянии был стоять на месте. Он продолжал и продолжал шагать, требуя новых решений. И когда каменноугольной смолы в сфере промышленности перестало хватать, людям просто пришлось создать новый органический синтез, который со временем перерос в открытие невероятно важного вещества, которое и по сей день дороже золота – нефть. Кстати, именно благодаря органической химии на свет появилась ее «дочка» - поднаука, которая получила название «нефтехимия».

Но это уже совсем другая история, которую вы можете изучить сами. Далее мы предлагаем вам посмотреть научно-популярное видео про органическую химию для чайников:

Ну а если вам некогда и срочно нужна помощь профессионалов , вы всегда знаете, где их найти.

http://www.mitht.ru/e-library

Помогаев А.И.

Краткий курс органической химии Часть 1

Теоретические основы органической химии.

Учебное пособие М., МИТХТ им. М.В.Ломоносова, 2003 – 48 с.

Издание 2-ое.

Утверждено Библиотечно-издательской комиссией МИТХТ

им. М.В. Ломоносова в качестве учебного пособия.

Данное методическое пособие предназначено для студентов 3 курса направления бакалавриата «Материаловедение и технология новых материалов», изучающих органическую химию в течение одного учебного семестра.

Пособие представляет собой изложение материала, не выходящего в основном за пределы учебной программы по органической химии для этого направления. В конце каждого раздела приводятся упражнения и типичные задачи, самостоятельное решение которых поможет студенту подготовиться как к контрольным работам, так и к экзамену.

Подготовлено на кафедре органической химии МИТХТ им. М.В. Ломоносова.

© Московская Государственная Академия Тонкой Химической Технологии им. М.В. Ломоносова

http://www.mitht.ru/e-library

СТРОЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ _____________ 4

1. Классификация органических соединений____________________________4

2. Образование связей в органических соединениях______________________5

3. Свойства ковалентных связей ______________________________________9

4. Электронные смещения в молекулах органических соединений_________11

4.1. Индуктивный эффект _____________________________________________11

4.2. Сопряжение орбиталей: делокализация связей, мезомерный эффект ______14

5. Изомерия органических соединений________________________________19

5.1. Структурная изомерия ____________________________________________19

5.2. Стереоизомерия__________________________________________________20

6. Задачи и упражнения_____________________________________________32

ОСНОВЫ ТЕОРИИ ОРГАНИЧЕСКИХ РЕАКЦИЙ__________ 34

1. Классификация органических реакций по типу разрыва связи __________34

1.1. Гомолитические или свободнорадикальные реакции ___________________34

1.2. Гетеролитические или ионные реакции ______________________________36

2. Классификация реакций по типу превращения _______________________38

3. Кислоты и основания в органической химии_________________________39

3.1. Кислоты и основания Бренстеда ____________________________________39

3.2. Кислоты и основания Льюиса ______________________________________43

3.3. Кислотно-основный катализ________________________________________44

4. Задачи и упражнения_____________________________________________45

http://www.mitht.ru/e-library

СТРОЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

1. Классификация органических соединений

Органическая химия изучает различные соединения углерода,

простейшими из которых являются соединения углерода с водородом –

углеводороды . Все остальные органические вещества могут быть рассмотрены как производные углеводородов , отличающиеся от углеводородов тем, что в них один или более атомов водорода замещены на какие-либо другие атомы или группы атомов (функциональные группы).

В состав органических соединений кроме атомов углерода и водорода могут входить атомы других элементов (так называемые гетероатомы ). Это,

прежде всего, атомы галогенов (галогенопроизводные углеводородов),

кислорода (спирты, фенолы, простые эфиры, альдегиды, кетоны, карбоновые кислоты), азота (амины, нитросоединения), серы (тиолы, сульфокислоты),

металлов (металлорганические соединения) и многих других элементов.

В основе классификации органических соединений лежит их структура

последовательность соединения атомов в молекуле . Для классификации органических соединений производят сначала классификацию углеводородной основы (родоначальной структуры), относя ее к насыщенным углеводородам с открытой цепью или циклическим, насыщенным или ненасыщенным,

алициклическим или ароматическим. А затем производят отнесение к соответствующим производным углеводородов, рассматривая функциональную группу. Так, например, бутан является насыщенным нециклическим углеводородом (такие углеводороды называются алканами), 1-бутен – ненасыщенным углеводородом нециклического строения, имеющим двойную связь (алкен). Циклобутен представляет собой циклический алкен, а бензол – ароматический углеводород. 2-Бутеналь является ненасыщенным ациклическим

(т.е. нециклическим) альдегидом, а бензойная кислота – это ароматическая карбоновая кислота.

http://www.mitht.ru/e-library

CH3 CH2 CH2 CH3

CH2 =CHCH2 CH3

CH3 CH=CHCH=O

циклобутен

2-бутеналь

бензойная

2. Образование связей в органических соединениях

Молекула любого органического соединения представляет собой упорядоченную совокупность атомов, связанных преимущественно ковалентной связью. Ионная связь также встречается в органических молекулах, однако, не она определяет строение и химическое поведение подавляющего большинства органических соединений. Органическая химия – это химия ковалентных соединений углерода.

Ковалентная связь – это связь, которую осуществляют два атома посредством обобществленной пары электронов. Обобществление пары электронов происходит при перекрывании атомных орбиталей двух атомов, при этом совершенно безразлично (для образовавшейся связи), сколько электронов было на каждой из перекрывающихся орбиталей. На обеих орбиталях может быть по одному электрону, или на одной из орбиталей может находиться пара электронов, а на другой – ни одного электрона (в последнем случае говорят о донорно-акцепторном механизме образования ковалентной связи).

Орбитали, которые атомы элементов 1-го и 2-го периодов предоставляют для образования связей в органических соединениях, могут иметь обычные для атомных орбиталей характеристики, т. е. быть s- или p-орбиталями. Так,

например, при образовании молекулы хлороводорода атом хлора предоставляет р-орбиталь, а атом водорода – s-орбиталь. На р-орбитали атома хлора может быть один электрон, тогда для образования связи атом водорода также предоставляет один электрон. Или на р-орбитали атома хлора могут находиться два электрона (анион), тогда для образования связи атом водорода должен иметь пустую, или вакантную, орбиталь (протон). В последнем случае ковалентная связь образуется по донорно-акцепторному способу: анион хлора выступает донором электронной пары, а протон – ее акцептором. Ниже

http://www.mitht.ru/e-library

представлены две схемы образования молекулярных орбиталей (связывающей и антисвязывающей, или разрыхляющей) при взаимодействии (перекрывании)

атомных орбиталей.

Для атома углерода, как и для атомов других элементов второго периода,

которые могут образовывать как простые (одинарные) связи, так и двойные или тройные связи, характерна так называемая гибридизация атомных орбиталей,

когда атомные орбитали разной энергии (s- и p-орбитали) выравнивают свои энергии, образуя так называемые вырожденные орбитали, т.е. орбитали,

имеющие одинаковую энергию.

Атом углерода имеет на внешнем энергетическом уровне четыре электрона. Два валентных электрона располагаются на s-орбитали, на двух р-

орбиталях имеется по одному электрону, а третья р-орбиталь пуста. При образовании связей атом углерода возбуждается, и один из s-электронов переходит на вакантную р-орбиталь.

возбуждение

s рх ру рz

Возбужденный атом углерода с электронной конфигурацией 2s2p3 может образовать максимально четыре ковалентные связи. При этом связи могут быть образованы с различным количеством атомов – с четырьмя, тремя или двумя.

В первом случае, когда атом углерода образует связи с четырьмя соседними атомами, т.е. является четырехкоординационным , происходит гибридизация всех четырех орбиталей с образованием четырех вырожденных орбиталей, отличающихся от исходных орбиталей и по энергии, и по форме.

http://www.mitht.ru/e-library

Этот процесс по участвующим в процессе орбиталям называют sp 3 -

гибридизацией , а образующиеся при этом орбитали – sp3 -гибридными орбиталями. В пространстве эти гибридные орбитали лежат на осях,

максимально удаленных друг от друга и расположенных в силу этого под углом

109,5О друг к другу (как отрезки, соединяющие центр тетраэдра с его вершинами). Поэтому атом углерода в sp3 -гибридизации называют еще

тетраэдрическим.

109,5o

Когда же атом углерода образует связи с тремя соседними атомами, т.е.

является трехкоординационным , происходит выравнивание энергий трех орбиталей – одной s- и двух р-орбиталей с образованием трех вырожденных sр 2 -гибридные орбитали, оси которых лежат в одной плоскости под углом 120О

друг к другу. Не участвующая в гибридизации р-орбиталь располагается перпендикулярно упомянутой плоскости.

120o

sр2

В третьем случае, когда атом углерода является двухкоординационным и

связан лишь с двумя соседними атомами, реализуется sр-гибридизация . Две вырожденные sр-орбитали располагаются под углом 180О друг к другу, т.е. на одной оси координат, а две негибридные р-орбитали находятся на двух других

осях координат.

http://www.mitht.ru/e-library

Образование связей атома углерода происходит при перекрывании его гибридных орбиталей с соответствующими гибридными или негибридными орбиталями других атомов. При этом могут реализовываться два принципиально различных способа перекрывания орбиталей.

А) Осевое перекрывание орбиталей, при котором максимум перекрывания находится на оси, проходящей через ядра связывающихся атомов, приводит к образованию σ-связи . Электронная плотность этой связи заключена между ядрами связанных атомов. Она симметрична относительно оси перекрывания. σ-Связь может быть образована перекрыванием любых атомных орбиталей. Атомы водорода и хлора в молекуле хлороводорода связаны σ-связью, образованной в результате осевого перекрывания s-орбитали атома водорода и р-орбитали атома хлора. В молекуле метана все четыре связи между атомом углерода и атомами водорода являются также σ-связями, каждая из которых образована перекрыванием одной из четырех sp 3 -гибридных орбиталей атома углерода с s-орбиталью атома водорода.

Перекрывание атомных орбиталей при образовании σ-связей в молекулах хлороводорода (а) и метана (б)

Б) Боковое перекрывание орбиталей – это перекрывание двух р-

орбиталей, расположенных на взаимно параллельных осях. Образующаяся при таком перекрывании π-связь характеризуется тем, что максимум перекрывания не находится на оси, проходящей через ядра связанных атомов. π-Связь образуют р-орбитали sр2 - или sр-гибридизованных атомов.

Так, например, в молекуле этилена (СН2 =СН2 ) три sр2 -гибридных орбитали каждого атома углерода при осевом перекрывании с двумя s-

орбиталями атомов водорода и одной sр2 -орбиталью соседнего атома углерода

http://www.mitht.ru/e-library

образуют три σ-связи. Негибридные р-орбитали атомов углерода перекрываются «боками» и образуют π-связь. При этом все пять σ-связей расположены в одной плоскости, а плоскость симметрии π-связи перпендикулярна ей.

В молекуле ацетилена тройная углерод-углеродная связь представляет собой комбинацию σ-связи и двух π-связей. Последние образуются боковым перекрыванием негибридных р-орбиталей во взаимно перпендикулярных

плоскостях.

Образование π-связей в молекулах этилена (а) и ацетилена (б)

3. Свойства ковалентных связей

Ковалентная связь характеризуется следующими параметрами:

 Длина связи определяется как расстояние между связанными атомами. Длина связи зависит от радиусов связанных атомов, от типа гибридизации атомов,

а также от кратности связи (табл. 1).

Таблица 1

Длина связи, Å

Длина связи, Å

 Энергия связи определяется как энергия образования или диссоциации связи и зависит от природы связанных атомов, от длины связи, а также от ее

http://www.mitht.ru/e-library

кратности (табл. 2). Следует отметить, что энергия двойной С-С-связи не представляет собой удвоенную энергию простой, поскольку боковое перекрывание орбиталей менее эффективно, чем осевое, и, следовательно, π-

связь менее прочная, чем σ-связь.

Таблица 2

Тип связи

Энергия связи,

Тип связи

Энергия связи,

ккал/моль

ккал/моль

Полярность связи определяется разностью электроотрицательностей связанных атомов. Электроотрицательность атома – это его способность притягивать валентные электроны. Если электроотрицательности связанных атомов одинаковы, электронная плотность связи равномерно распределена между атомами. Во всех остальных случаях электронная плотность связи смещена в ту или иную сторону в зависимости от того, к какому из атомов она притягивается сильнее. На более электроотрицательном атоме возникает при этом так называемый частичный отрицательный заряд, а на менее электроотрицательном атоме – частичный положительный заряд. Для двухатомных молекул полярность связи может быть очень просто охарактеризована дипольным моментом молекулы, который может быть измерен. Обычно полярность простой связи изображают стрелкой вдоль связи, направленной к более электроотрицательному атому. Полярность кратных связей изображают изогнутой стрелкой, направленной от связи к более электроотрицательному атому. Ниже приведены примеры

Органическая химия
Понятие органической химии и причины её выделения в самостоятельную дисциплину

Изомеры – вещества одинакового качественного и количественного состава (т.е. имеющие одинаковую суммарную формулу), но разного строения, следовательно, различными физическими и химическими свойствами.

Фенантрен (справа) и антрацен (слева) - структурные изомеры.

Краткий очерк развития органической химии

Первый период развития органической химии, называемый эмпирическим (с середины XVII до конца XVIIIвека), охватывает большой промежуток времени от первоначального знакомства человека с органическими веществами до возникновения органической химии как науки. В этот период познание органических веществ, способов их выделения и переработки происходило опытным путем. По определению знаменитого шведского химика И. Берцелиуса, органическая химия этого периода была «химией растительных и животных веществ». К концу эмпирического периода были известны многие органические соединения. Из растений были выделены лимонная, щавелевая, яблочная, галловая, молочная кислоты, из мочи человека – мочевина, из мочи лошади – гиппуровая кислота. Обилие органических веществ послужило стимулом для углубленного изучения их состава и свойств.
Следующий период, аналитический (конец XVIII - середина XIX века), связан с появлением методов установления состава органических веществ. Важнейшую роль в этом сыграл открытый М. В. Ломоносовым и А. Лавуазье закон сохранения массы (1748), положенный в основу количественных методов химического анализа.
Именно в этот период было установлено, что все органические соединения содержат углерод. Кроме углерода, в составе органических соединений были обнаружены такие элементы, как водород, азот, сера, кислород, фосфор, которые в настоящее время называют элементами-органогенами. Стало ясно, что органические соединения отличаются от неорганических прежде всего по составу. К органическим со­единениям существовал тогда особое отношение: их продолжали счи­тать продуктами жизнедеятельности растительных или животных организмов, которые можно получить только с участием нематериальной «жизненной силы». Эти идеалистические воззрения были опровергнуты практикой. В 1828 г. немецкий химик Ф. Велер синтезировал органическое соединение мочевину из неорганического цианата аммония.
С момента исторического опыта Ф. Велера начинается бурное развитие органического синтеза. И. Н. Зинин восстановлением нитробензола получил , положив тем самым начало анилинокрасочной промышленности (1842). А. Кольбе синтезировал (1845). М, Бертло – вещества типа жиров (1854). А. М. Бутлеров – первое сахаристое вещество (1861). В наши дни органический синтез составляет основу многих отраслей промышленности.
Важное значение в истории органической химии имеет структурный период (вторая половина XIX - начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был великий русский химик А. М. Бутлеров. Основные положения теории строения имели большое значение не только для своего времени, но служат научной платформой и для современной органической химии.
В начале XX века органическая химия вступила в современный период развития. В настоящее время в органической химии для объяснения ряда сложных явлений используются квантово-механические представления; химический эксперимент все больше сочетается с использованием физических методов; возросла роль различных расчетных методов. Органическая химия превратилась в такую обширную область знаний, что от нее отделяются новые дисциплины – биоорганическая химия, химия элементоорганических соединений и др.

Теория химического строения органических соединений А. М. Бутлерова

Решающая роль в создании теории строения органических соединений принадлежит великому русскому ученому Александру Михайловичу Бутлерову. 19 сентября 1861 года на 36-м съезде немецких естествоиспытателей А.М.Бутлеров обнародовал ее в докладе "О химическом строении вещества".

Основные положения теории химического строения А.М.Бутлерова:

  1. Все атомы в молекуле органического соединения связаны друг с другом в определенной последовательности в соответствии с их валентностью. Изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами. Например, составу вещества С2Н6О отвечают два разных соединения: - смотрите .
  2. Свойства веществ зависят от их химического строения. Химическое строение – это определенный порядок в чередовании атомов в молекуле, во взаимодействии и взаимном влиянии атомов друг на друга - как соседних, так и через другие атомы. В результате каждое вещество имеет свои особые физические и химические свойства. Например, диметиловый эфир – это газ без запаха, нерастворимый в воде, t°пл. = -138°C, t°кип. = 23,6°C; этиловый спирт - жидкость с запахом, растворимая в воде, t°пл. = -114,5°C, t°кип. = 78,3°C.
    Данное положение теории строения органических веществ объяснило явление , широко распространенное в органической химии. Приведенная пара соединений – диметиловый эфир и этиловый спирт – один из примеров, иллюстрирующих явление изомерии.
  3. Изучение свойств веществ позволяет определить их химическое строение, а химическое строение веществ определяет их физические и химические свойства.
  4. Атомы углерода способны соединятся между собой, образовывая углеродные цепи различного вида. Они могут быть как открытыми, так и замкнутыми (циклическими), как прямыми, так и разветвленными. В зависимости от числа связей, затрачиваемых атомами углерода на соединение друг с другом, цепи могут быть насыщенными (с одинарными связями) или ненасыщенными (с двойными и тройными связями).
  5. Каждое органическое соединение имеет одну определенную формулу строения или структурную формулу, которую строят, основываясь на положении о четырехвалентном углероде и способности его атомов образовывать цепи и циклы. Строение молекулы как реального объекта можно изучить экспериментально химическими и физическими методами.

А.М.Бутлеров не ограничился теоретическими объяснениями своей теории строения органических соединений. Он провел ряд экспериментов, подтвердив предсказания теории получением изобутана, трет. бутилового спирта и т.д. Это дало возможность А.М.Бутлерову заявить в 1864 году, что имеющиеся факты позволяют ручаться за возможность синтетического получения любого органического вещества.