Общие закономерности биологической эволюции. Основные закономерности эволюции органического мира

Вопрос 1. Назовите основные типы эволюционных изменений.
Ученые выделяют следующие типы эволюционных изменений: параллелизм, конвергенция и дивергенция .

Вопрос 2. Что такое параллельные изменения, конвергентные, дивергентные?
Параллелизм - явление, при котором в ходе эволюции происходит независимое приобретение сходных черт строения на базе наследственных особенностей, полученных от общих предков (например, сходные приспособления к водному образу жизни у моржей ушастых и настоящих тюленей).
Конвергенция - схождение признаков в ходе эволюции (например, сходная форма тела у рыб и китообразных). При конвергентных изменениях два или более вида, несвязанные близким родством, становятся все более и более похожими друг на друга. Такой тип эволюционных изменений является результатом приспособлений к сходным условиям внешней среды.
Дивергенция - расхождение признаков у родственных организмов в процессе эволюции. Дивергентные изменения представляют обычно в виде эволюционного древа с расходящимися ветвями: общий предок дал начало двум или большему количеству форм, которые, в свою очередь, стали родоначальниками многих видов и родов. Дивергенция почти всегда отражает расширение адаптации к новым жизненным условиям.

Вопрос 3. В чем отличие гомологичных структур от аналогичных?
При параллельной и конвергентной эволюции сходство внешнего строения может быть результатом гомологии - происхождения от общего предка (примером являются конечности разных групп позвоночных)
или аналогии - независимой эволюции тех систем органов, которые выполняют сходные функции (например, крылья у птиц и насекомых).
Устанавливая родственные отношения животных на основании черт морфологического сходства, биологи не должны смешивать гомологичные образования с аналогичными. Гомологичными называются те структуры, которые у разных животных возникают из одних и тех же эмбриональных зачатков и сходны между собой по основному плану строения и развития; из этого следует, что они имеют общую генетическую основу и отражают эволюционное родство. Напротив, аналогичные органы обладают только внешним сходством и выполняют одинаковые функции, но план их строения и пути развития различны. Наличие аналогичных структур не говорит об эволюционном родстве обладающих ими животных. Рука человека, крыло птицы и грудной (передний) плавник кита – всё это гомологичные органы: они сходны по входящим в их состав костям, мышцам, нервам и кровеносным сосудам, по общему плану строения и по эмбриональному развитию, хотя и выполняют весьма различные функции. Напротив, крыло птицы и крыло бабочки только аналогичны: оба органа служат для полёта, но пути их развития не имеют между собой ничего общего. Гемоглобины различных животных, цитохромы с различных позвоночных, лактатдегидрогеназы птиц и млекопитающих можно назвать гомологичными белками. Например, гемоглобины разных животных очень сходны по последовательности аминокислот, что опять-таки отражает общность их генетической основы и эволюционное родство этих животных. Напротив, гемоглобин и гемоцианин можно назвать аналогичными пигментами, так как, хотя они и выполняют одинаковую функцию (переносят кислород), их молекулярная структура совершенно различна.

Макроэволюция представляет собой обобщенную картину эволюционных преобразований. Только на уровне макроэволюции обнаруживаются общие тенденции, направления и закономерности эволюции органического мира.

В течение второй половины XIX – первой половины XX века на основании многочисленных исследований закономерностей эволюционного процесса были сформулированы основные правила (принципы ) эволюции . (Эти правила носят ограниченный характер, не имеют универсального значения для всех групп организмов и не могут считаться законами.)

1. Правило необратимости эволюции , или принцип Долло (Луи Долло, бельгийский палеонтолог, 1893): исчезнувший признак не может вновь появиться в прежнем виде . Например, вторично-водные моллюски и водные млекопитающие не восстановили жаберного дыхания.

2. Правило происхождения от неспециализированных предков , или принцип Копа (Эдуард Коп, американский палеонтолог-зоолог, 1904): новая группа организмов возникает от неспециализированных предковых форм . Например, неспециализированные Насекомоядные (типа современных тенреков) дали начало всем современным плацентарным млекопитающим.

3. Правило прогрессирующей специализации , или принцип Депере (Ш. Депере, палеонтолог, 1876): группа, вступившая на путь специализации, в дальнейшем развитии будет идти по пути все более глубокой специализации . Современные специализированные млекопитающие (Рукокрылые, Ластоногие, Китообразные), скорее всего, будут эволюционировать поп пути дальнейшей специализации.

4. Правило адаптивной радиации , или принцип Ковалевского-Осборна (В.О. Ковалевский, Генри Осборн, американский палеонтолог): группа, у которой появляется безусловно прогрессивный признак или совокупность таких признаков, дает начало множеству новых групп, формирующих множество новых экологических ниш и даже выходящих в иные среды обитания . Например, примитивные плацентарные млекопитающие дали начало всем современным эволюционно-экологическим группам млекопитающих.

5. Правило интеграции биологических систем , или принцип Шмальгаузена (И.И. Шмальгаузен): новые, эволюционно молодые группы организмов вбирают в себя все эволюционные достижения предковых групп . Например, млекопитающие использовали все эволюционные достижения предковых форм: опорно-двигательный аппарат, челюсти, парные конечности, основные отделы центральной нервной системы, зародышевые оболочки, совершенные органы выделения (тазовые почки), разнообразные производные эпидермиса и т.д.

6. Правило смены фаз , или принцип Северцова-Шмальгаузена (А.Н. Северцов, И.И. Шмальгаузен): различные механизмы эволюции закономерно сменяют друг друга . Например, алломорфозы рано или поздно становятся ароморфозами, а на основе ароморфозов возникают новые алломорфозы.

В дополнение к правилу смены фаз Дж. Симпсон ввел правило чередования темпов эволюции; по скорости эволюционных преобразований он различал три типа эволюции: брадителлическую (медленные темпы), горотеллическую (средние темпы) и тахителлическую (быстрые темпы).

Конец формы

Тема 10: Главные направления эволюции

1. Биологический прогресс. Неограниченный прогресс. Биологическая стабилизация и биологический регресс

2. Арогенез и ароморфозы. Эпиморфоз

3. Аллогенез и его формы

4. Катагенез и его формы

5. Правило смены фаз

Можно выказать гипотезу, что есть «…общее правило, гласящее, что структура организма допускает лишь ограниченный набор возможных преобразований и тем самым придает эволюции некоторую направленность, а иногда и предопределённость.

По-видимому, эволюция - это процесс в целом закономерный и предопределённый, но в деталях и частностях случайный. Предсказать ход эволюции можно лишь в самых общих чертах. У эволюции нет строгих законов, как в математике или физике.

У неё есть только набор закономерностей и правил, каждое из которых имеет множество исключений.

К числу важнейших закономерностей эволюции я бы отнёс следующие три «правила».

1. Общая направленность от простого к сложному. Хотя до сих пор сохранились и процветают такие примитивные формы жизни, как бактерии, никто не станет отрицать, что в биосфере идёт постепенное появление и накопление всё более сложных организмов. Часто усложнение организации оказывается выгодным, потому что ведёт к повышению интенсивности обмена веществ (росту «энергии жизнедеятельности»), а ведь в биологической эволюции, как и в химической […] , побеждает тот «круговорот», который крутится быстрее. Это позволяет более сложным организмам занимать господствующее положение в сообществах, оттесняя примитивных предков в менее привлекательные ниши. Именно поэтому облик биосферы определяется в основном высокоорганизованными животными и растениями. И это несмотря на то, что и по численности, и по массе бактерии их явно превосходят. Рост биоразнообразия в целом носит аддитивный, то есть накопительный, характер - новое обычно добавляется к старому, а не вытесняет его.

2. Рост устойчивости и приспособляемости живых систем. Все эволюционные линии, дожившие до наших дней, в ходе своего развития прошли через горнило множества экологических кризисов, катастроф и массовых вымираний. Те группы, которые не могли быстро приспосабливаться к меняющимся условиям, в большинстве своём давно вымерли. Устойчивые, пластичные линии постепенно накапливались в биосфере. Это видно, например, из того факта, что с течением времени средняя продолжительность существования видов, родов и семейств неуклонно росла. Поэтому в наши дни биосферу населяют самые устойчивые и пластичные формы жизни из всех когда-либо существовавших.

3. Рост эффективности и безотходности биогеохимического круговорота. С ростом сложности и совершенства организмов и их сообществ неизбежно растёт и эффективность глобального круговорота веществ, в котором биосфера играет важнейшую роль и который определяет лицо нашей планеты. Например, самое сложное и совершенное из современных сообществ - тропический лес - не только чрезвычайно быстро «прокручивает» через себя огромные количества вещества и энергии, но и практически не производит никаких отходов. Там не образуется даже подстилка из листьев и других отмерших частей растений - всё это очень быстро перерабатывается грибами, бактериями и беспозвоночными и возвращается в круговорот. Совсем по-другому обстояло дело, например, в древних лесах каменноугольного периода, в которых из-за несовершенства структуры сообщества огромные массы отмершей древесины накапливались, образуя месторождения каменного угля. В результате столь необходимый для жизни углерод безвозвратно выводился из глобального круговорота. Рост безотходности заметен и в эволюции организмов. У высших растений и животных постепенно растёт продолжительность жизни, снижается «детская смертность», развивается забота о потомстве, что позволяет, в свою очередь, снизить уровень рождаемости - то есть фактически производить меньше заведомо обреченных на гибель потомков.

Все три названных закономерности: усложнение, рост устойчивости и безотходности - отчётливо прослеживаются и в развитии человеческого общества. Это позволяет говорить о преемственности социальной эволюции по отношению к эволюции биологической и придаёт особый смысл и практическое значение эволюционным исследованиям.

Важно подчеркнуть, что из этой преемственности вовсе не следует никакого «социал-дарвинизма» и она вовсе не свидетельствует об усилении «борьбы за существование» и «естественного отбора» в обществе, как пытались доказать некоторые политические силы в первой половине XX века. В трудах современных эволюционистов, например, В.А. Красикова, подчёркивается неуклонное ослабление роли борьбы за существование и отбора в ходе эволюции, развитие более «гуманных» эволюционных стратегий, основанных на взаимопомощи и симбиозе и ведущих к росту пластичности и снижению всевозможных потерь и отходов […] Может быть, самый главный из всех эволюционных законов - это постепенное отступление Смерти и Хаоса перед лицом развивающейся Жизни».

Марков А.В., Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы, М., «Астрель», 2010 г., с. 361-365.

Дивергенция. Появление новых форм всегда связано с приспособлением к местным географическим и экологическим условиям существования. Так, класс млекопитающих состоит из многочисленных отрядов, представители которых отличаются родом пищи, особенностями мест обитания, то есть условиями существования. Каждый из этих отрядов включает подотряды и семейства, которые, в свою очередь характеризуются не только специфическими морфологическими признаками, но и экологическими особенностями. Внутри любого семейства виды и роды различаются образом жизни, объектами питания. Как указывал Дарвин, в основе всего эволюционного процесса лежит дивергенция. Дивергенция любого масштаба есть результат действия естественного отбора в форме группового отбора. Групповой отбор так же основан на индивидуальном отборе внутри популяции. Вымирание вида происходит за счёт гибели отдельных особей. Своеобразие морфологических особенностей организмов, приобретаемых в процессе дивергенции, имеет некоторую единую основу в виде генофонда родственных форм. Конечности всех млекопитающих сильно отличаются, но имеют единый план строения и представляют собой пятипалую конечность. Поэтому органы, соответствующие друг другу по строению и имеющие общее происхождение, независимо от выполняемой функции, называют гомологичными. Примером гомологичных органов у растений являются усы гороха, колючки кактуса – всё это видоизменённые листья.

Конвергенция. В одинаковых условиях существования животные, относящиеся к разным систематическим группам, могут приобретать сходное строение. Такое сходство строения возникает при сходстве функций и ограничивается лишь органами, непосредственно связанными с одними и теми же факторами среды. Внешне очень похожи хамелеоны и агамы, лазающие по ветвям деревьев, хотя относятся к разным подотрядам. У позвоночных животных конвергентное сходство обнаруживают конечности морских рептилий и млекопитающих: акула, ихтиозавр, дельфины. Схождение признаков затрагивает в основном лишь те органы, которые непосредственно связаны со сходными условиями среды. Конвергенция наблюдается и у групп животных, далеко отстоящих друг от друга в систематическом отношении. Организмы, обитающие в воздухе, имеют крылья. Но крылья птицы и летучей мыши – это изменённые конечности, а крылья бабочки – выросты стенки тела.

Органы, выполняющие сходные функции, но имеющие различное в принципе строение и происхождение, называют аналогичными.

Примеры возникновения конвергентного сходства строения органов в одинаковых условиях среды даёт приспособление неродственных групп животных – членистоногих и позвоночных к жизни на суше. При освоении суши у членистоногих и позвоночных развивается приспособление к сохранению воды в теле – плотные наружные покровы.

К общим правилам эволюции групп организмов относится правило необратимости. Так, если на каком-то этапе от примитивных амфибий возникли рептилии, то рептилии не могут дать вновь начало амфибиям. Вернувшиеся в воду наземные позвоночные (киты) не стали рыбами. Предыдущая история развития для любой группы организмов не проходит бесследно, и приспособление к среде, в которой когда-то обитали предки, осуществляется уже на иной генетической основе.

Контрольные вопросы

1. В каких направлениях условия жизни влияют на преобразование органов у животных и растений?

2. Раскройте содержание понятий «дивергенция» и «конвергенция».

3. Какие органы называются гомологичными. А какие аналогичными?

4. Приведите примеры сходства строения органов у неродственных групп животных, обитающих в одинаковых условиях.

5. В чём сущность правила необратимости эволюции?

Тема 5.5 Развитие органического мира

Развитие жизни на Земле

Историю Земли принято делить на промежутки времени, границами которых являются крупные геологические события: горообразовательные процессы, поднятия и опуская суши, изменения очертаний материков, уровня океана. Движения и разломы земной коры сопровождались усиленной вулканической деятельностью, выбросом в атмосферу громадного количества газов и пепла. Понижение прозрачности атмосферы уменьшало количество солнечной радиации, попадающей на Землю, и было одной из причин развития оледенения. Аналогичные последствия могут быть в результате массированных ядерных взрывов на поверхности Земли (ядерная зима). Не случайно горообразовательные процессы сопровождались оледенениями. Грандиозные ледниковые щиты, покрывавшие поверхность Земли, значительно изменяли климатические условия и тем самым оказывали глубокое влияние на растительный и животный мир. Одни группы организмов вымирали, другие сохранялись и в межледниковые эпохи достигали расцвета.

Согласно представлениям учёных история Земли делится на крупные промежутки – эры, их 5. Эры подразделяются на периоды. Эры и периоды имеют собственные названия. Их продолжительность исчисляется миллионами лет.

В таблице 2 приведена геохронологическая шкала с указанием групп животных и растений, существовавших в разные геологические эпохи.

Таблица 2

Геохпонологическая шала

Продолжение таблицы 2

Палеозойская (древней жизни) Силурийский Девонский 50-70 Каменноугольный (карбон) 55-75 Пермский Появление бесчелюстных позвоночных – щитковых. Широкое распространение водорослей. В конце периода – выход растений на сушу (псилофиты) Расцвет щитковых. Появление кистепёрых рыб и стегоцефалов. Возникновение грибов. Развитие, а затем вымирание псилофитов. Распространение на суше высших споровых. Расцвет земноводных, возникновение первых пресмыкающихся. Появление пауков, скорпионов, летающих форм насекомых. Сокращение численности трилобитов. Развитие высших споровых и семенных папоротников. Преобладание древних плаунов и хвощей. Развитие грибов Быстрое развитие пресмыкающихся. Развитие звероподоб-

Продолжение таблицы 2

Продолжение таблицы 2

В архейскую эру возникли первые живые организмы. Они были гетеротрофами и в качестве пищи использовали органические соединения «первичного бульона». Важнейший этап эволюции жизни на Земле связан с возникновением фотосинтеза, что обусловило разделение органического мира на растительный и животный. Первыми фотосинтезирующими организмами были прокариотические сине-зелёные водоросли – цианеи. Цианеи и появившиеся эукариотические зелёные водоросли выделяли в атмосферу из океана свободный кислород, что способствовало возникновению бактерий, способных жить в аэробной среде. Повидимому, в это же время – на границе архейской и протерозойской эр – произошло ещё два крупных эволюционных события: появились половой процесс и многоклеточность. Гаплоидные организмы (микробы, сине-зелёные водоросли) имеют один набор хромосом. Каждая новая мутация сразу же проявляется в фенотипе. Если мутация полезна, она сохраняется отбором, если вредна, устраняется отбором. Гаплоидные организмы непрерывно приспосабливаются к среде, но принципиально новых признаков и свойств у них не возникает. Половой процесс резко повышает возможность приспособления к условиям среды, вследствие создания бесчисленных комбинаций в хромосомах. Диплоидность возникла одновременно с оформленным ядром, она позволяет сохранить мутации в гетерозисном состоянии и использовать их как резерв наследственной изменчивости для дальнейших эволюционных преобразований. Кроме того, в гетерозисном состоянии многие мутации часто повышают жизнеспособность особей и, следовательно, увеличивают их шансы в борьбе за существование. Возникновение диплоидности и генетического разнообразия одноклеточных эукариот, с одной стороны, обусловило неоднородность строения клеток и их объединение в колонии, с другой – возможность «разделения труда» между клетками колонии, то есть образование многоклеточных организмов.

Разделение функций клеток у первых колониальных многоклеточных организмов привело к образованию первичных тканей – эктодермы и энтодермы, дифференцированных по структуре в зависимости от выполняемых функций. Дальнейшая дифференцировка тканей создала разнообразие, необходимое для расширения структурных и функциональных возможностей организма в целом, в результате чего создавались всё более сложные организмы. Совершенствование взаимодействия между клетками – сначала контактного, а затем опосредованного с помощью нервной эндокринной систем – обеспечило существование многоклеточного организма, как единого целого со сложным и тонким взаимодействием его частей и соответствующим реагированием на окружающую среду.

Пути эволюционных преобразований первых многоклеточных были различны. Некоторые перешли к сидячему образу жизни превратились в организмы типа губок. Другие стали ползать, перемещаться по субстрату с помощью ресничек. От них произошли плоские черви. Третьи сохранили плавающий образ жизни, приобрели рот и дали начало кишечнополостным.

В протерозойскую эру в морях уже обитало много разнообразных водорослей, в том числе прикреплённых ко дну форм. Суша была безжизненной, но по берегам водоёмов начались почвообразовательные процессы в результате деятельности бактерий и микроскопических водорослей. Начальные звенья эволюции животных не сохранились. В протерозойских отложениях находят представителей вполне сформировавшихся типов животных: губок, кишечнополостных, членистоногих.

Контрольные вопросы

1. По какому принципу историю Земли делят на эры и периоды?

2. Когда возникли первые живые организмы?

3. Какими живыми организмами был представлен живой мир в протерозойскую эру?

4. Когда появились первые наземные растения?

5. Какие эволюционные преимущества даёт переход растений к семенному размножению?

https://refdb.ru/look/2257615-p10.html